SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Probability, MET2 2018 VCAA 15 MC

A probability density function, `f`, is given by
 

`f(x) = {(1/12 (8x -x^3)), (\ 0):} qquad {:(0 <= x <= 2), (text(elsewhere)):}`
 

The median, `m`, of this function satisfies the equation

A.   `-m^4 + 16m^2 - 6 = 0`

B.   `-m^4 + 4m^2 - 6 = 0`

C.   `m^4 - 16m^2 = 0`

D.   `m^4 - 16m^2 + 24 = 0.5`

E.   `m^4 - 16m^2 + 24 = 0`

Show Answers Only

`E`

Show Worked Solution

♦ Mean mark 49%.

`int_0^m 1/12(8x – x^3) dx` `= 0.5`
`[1/12(4x^2 – x^4/4)]_0^m` `= 0.5`
`(4m^2 – m^4/4)` `= 6`
`16m^2 – m^4` `= 24`
`m^4 – 16m^2 + 24` `= 0`

 
`=>   E`

Filed Under: Probability Density Functions (old) Tagged With: Band 5, smc-637-20-Median (old)

Probability, MET1 2014 VCAA 8

A continuous random variable, `X`, has a probability density function given by
 

`f(x) = {{:(1/5e^(−x/5),x >= 0),(0, x < 0):}`
 

The median of `X` is  `m`.

  1. Determine the value of  `m`.  (2 marks)
  2. The value of `m` is a number greater than 1.

     

    Find `text(Pr)(X < 1 | X <= m)`.  (2 marks)

Show Answers Only
  1. `−5log_e(1/2)\ \ text(or)\ \ 5log_e(2)\ \ text(or)\ \ log_e 32`
  2. `2(1 – e^(−1/5))`
Show Worked Solution
a.    `1/5 int_0^m e^(−x/5)dx` `= 1/2`
  `1/5 xx (−5)[e^(−x/5)]_0^m` `= 1/2`
  `[-e^(- x/5)]_0^m` `= 1/2`
  `-e^(−m/5) + 1` `= 1/2`
  `e^(−m/5)` `= 1/2`
  `- m/5` `= log_e(1/2)`

 

`:. m = −5log_e(1/2)\ \ \ (text(or)\ \ 5log_e(2),\ text(or)\ \ log_e 32)`

 

b.   `text(Using Conditional Probability:)`

♦ Part (b) mean mark 38%.
MARKER’S COMMENT: A common error was assuming `m` obtained in part (a) was equivalent to `text(Pr)(X<=m)`.
`text(Pr)(X < 1 | X <= m)` `= (text(Pr)(X < 1))/(text(Pr)(X <= m))`
  `= (1/5 int_0^1 e^(−x/5)dx)/(1/2)`
  `= (1/5(−5)[e^(−x/5)]_0^1)/(1/2)`
  `= −2[(e^(−1/5)) – e^0]`
  `= 2(1 – e^(−1/5))`

Filed Under: Probability Density Functions (old) Tagged With: Band 4, Band 5, smc-637-20-Median (old), smc-637-40-Conditional probability, smc-637-70-Exp/Log PDF

Copyright © 2014–2025 SmarterEd.com.au · Log in