SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 7

Consider the function  \(h(x)=\begin{cases}\dfrac{x^2-9}{x-3}, & \text {for } x \neq 3 \\ k, & \text {for } x=3\end{cases}\)

  1. For what value of \(k\) is \(h(x)\) continuous at  \(x =3\)?   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Sketch  \(y=h (x)\)  for this value of \(k\).   (2 marks) 

    --- 12 WORK AREA LINES (style=blank) ---

Show Answers Only

a.    \(\text{Since} \ \ \dfrac{x^2-9}{x-3}=\dfrac{(x+3)(x-3)}{x-3}=x+3\)

\(\text{As} \ \ x \rightarrow 3, x+3 \rightarrow 6\)

\(h(x) \ \text {is continuous when}\ \  k=6\)
 

b.   
         

Show Worked Solution

a.    \(\text{Since} \ \ \dfrac{x^2-9}{x-3}=\dfrac{(x+3)(x-3)}{x-3}=x+3\)

\(\text{As} \ \ x \rightarrow 3, x+3 \rightarrow 6\)

\(h(x) \ \text {is continuous when}\ \  k=6\)
 

b.   
         

Filed Under: Piecewise Functions Tagged With: Band 4, smc-6217-10-Sketch graph, smc-6217-40-Continuity, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in