SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, 2ADV EQ-Bank 9

Consider the function

\begin{align*}
f(x)=\begin{cases}2^x, & \text {for }\ x<0 \\ m x+c, & \text {for }\ 0 \leq x \leq 2 \\ \dfrac{8}{x}, & \text {for }\ x>2\end{cases}
\end{align*}

Given that \(f(x)\) is continuous at both  \(x =0\)  and \(x =2\):

  1. Find the values of \(m\) and \(c\).   (2 marks)

    --- 6 WORK AREA LINES (style=blank) ---

  2. Identify any asymptotes of  \(y=f(x)\).   (1 mark)

    --- 4 WORK AREA LINES (style=blank) ---

Show Answers Only

a.    \(f(x)=\left\{\begin{array}{cl}2^x & \text {for } x<0 \\ m x+c & \text {for } 0 \leq x \leq 2 \\ \dfrac{8}{x} & \text {for } x>2\end{array}\right.\)

\(\text {Continuous at}\ \ x=0:\)

\(2^\circ=m(0)+c \ \Rightarrow \ c=1\)

\(\text {Continuous at}\ \ x=2:\)

\(2 m+1=\dfrac{8}{2} \ \Rightarrow \ m=\dfrac{3}{2}\)
 

b.    \(\text{Asymptotes:}\)

\(\text{As} \ x \rightarrow-\infty, 2^x \rightarrow 0^{+}\)

\(\text{As} \ x \rightarrow \infty, \dfrac{8}{x} \rightarrow 0^{+}\)
 

\(\text{Asymptote at} \ \ y=0.\)

\(\text{There are no vertical asymptotes.}\)

Show Worked Solution

a.    \(f(x)=\left\{\begin{array}{cl}2^x & \text {for } x<0 \\ m x+c & \text {for } 0 \leq x \leq 2 \\ \frac{8}{x} & \text {for } x>2\end{array}\right.\)

\(\text {Continuous at}\ \ x=0:\)

\(2^\circ=m(0)+c \ \Rightarrow \ c=1\)

\(\text {Continuous at}\ \ x=2:\)

\(2 m+1=d\dfrac{8}{2} \ \Rightarrow \ m=\dfrac{3}{2}\)
 

b.    \(\text{Asymptotes:}\)

\(\text{As} \ x \rightarrow-\infty, 2^x \rightarrow 0^{+}\)

\(\text{As} \ x \rightarrow \infty, \dfrac{8}{x} \rightarrow 0^{+}\)
 

\(\text{Asymptote at} \ \ y=0.\)

\(\text{There are no vertical asymptotes.}\)

Filed Under: Piecewise Functions Tagged With: Band 4, smc-6217-40-Continuity, smc-6217-60-Other problems, syllabus-2027

Copyright © 2014–2026 SmarterEd.com.au · Log in