Verify that the points \((1\ ,\ -1)\) and \((-7 ,\ 3)\) lie on the line \(x+2y=-1\)? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Verify that the points \((1\ ,\ -1)\) and \((-7 ,\ 3)\) lie on the line \(x+2y=-1\)? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\text{See worked solution}\)
\(\text{Check points by substituting into }x+2y=-1\)
\((1\ ,-1) \longrightarrow\) | \(LHS\) | \(=1+2\times (-1)\) |
\(=1-2=-1\) | ||
\(=RHS\) |
\((-7 ,\ 3) \longrightarrow\) | \(LHS\) | \(=-7+2\times 3\) |
\(=-7+6=-1\) | ||
\(=RHS\) |
\(\therefore\ (1\ ,-1)\ \text{and }(-7 ,\ 3) \text{ both lie on the line}\ \ x+2y=-1\)
Verify that the points \((1\ ,\ 1)\) and \((-2 ,\ 7)\) lie on the line \(y=-2x+3\)? (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\text{See worked solution}\)
\(\text{Check points by substituting into }y=-2x+3\)
\((1\ ,\ 1) \longrightarrow\) | \(RHS\) | \(=-2\times 1+3\) |
\(=1\) | ||
\(=LHS\) |
\((-2 ,\ 7) \longrightarrow\) | \(RHS\) | \(=-2\times (-2)+3\) |
\(=7\) | ||
\(=LHS\) |
\(\therefore\ (1\ ,\ 1)\ \text{and }(-2 ,\ 7) \text{ both lie on the line}\ \ y=-2x+3\)
Verify that the points \((2\ ,\ 5)\) and \((-1 ,-1)\) lie on the line \(y=2x+1\)? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\text{See worked solution}\)
\(\text{Check points by substituting into }y=2x+1\)
\((2\ ,\ 5) \longrightarrow\) | \(RHS\) | \(=2\times 2+1\) |
\(=5\) | ||
\(=LHS\) |
\((-1 ,-1) \longrightarrow\) | \(RHS\) | \(=2\times (-1)+1\) |
\(=-1\) | ||
\(=LHS\) |
\(\therefore\ (2\ ,\ 5)\ \text{and }(-1 ,-1) \text{ both lie on the line}\ \ y=2x+1\)
Which of the following points lies on the line \(y=2x-4\)?
\(D\)
\(\text{Check each option by substituting into }y=2x-4\)
\(\text{Option A:}\ \ \ \) | \(2\) | \(\ne 2\times 0-4=-4\) |
\(\text{Option B:}\) | \(8\) | \(\ne 2\times (-2)-4=-8\) |
\(\text{Option C:}\) | \(-1\) | \(\ne 2\times 2-4=0\) |
\(\text{Option D:}\) | \(-6\) | \(=2\times (-1)-4=-6\ \ \ \checkmark\) |
\(\therefore\ (-1, -6) \text{ lies on the line}\ \ y=2x-4\)
\(\Rightarrow D\)
Which of the following points lies on the line \(y=10+x\)?
\(B\)
\(\text{Check each option by substituting into }y=10+x\)
\(\text{Option A:}\ \ \ \) | \(7\) | \(\ne 10+3\) |
\(\text{Option B:}\) | \(8\) | \(=10+-2\ \ \ \checkmark\) |
\(\text{Option C:}\) | \(-8\) | \(\ne 10+2\) |
\(\text{Option D:}\) | \(-4\) | \(\ne 10+-6\) |
\(\therefore\ (-2, 8) \text{ lies on the line}\ \ y=10+x\)
\(\Rightarrow B\)
Renee and Leisa are saving money so they can visit their grandmother on a holiday.
Renee has $100 and plans to save $30 each week.
Leisa has $200 and plans to save $10 each week.
(i) Renee's savings (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
(ii) Leisa's savings (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
Renee's savings |
\(\ \ \ \ \ \ \ \) |
Leisa's savings |
--- 1 WORK AREA LINES (style=lined) ---
a. (i) \(s=100+30w\)
(ii) \(s=200+10w\)
b.
\(\text{Renee’s savings: }s=100+30w\) |
\(\ \ \ \ \ \ \ \) |
\(\text{Leisa’s savings: }s=200+10w\) |
c.
d. \(5\ \text{weeks}\)
a. (i) \(s=100+30w\)
(ii) \(s=200+10w\)
b.
\(\text{Renee’s savings: }s=100+30w\) |
\(\ \ \ \ \ \ \ \) |
\(\text{Leisa’s savings: }s=200+10w\) |
c.
d. \(\text{Method 1 – Graphically by inspection}\)
\(\text{Lines intersect when }w=5\ \text{and }s=$250\)
\(\text{Method 2 – Algebraically}\)
\(\text{Solve }s=100+30w\ \text{ and }s=200+10w\ \text{simultaneously}\)
\(100+30w\) | \(=200+10w\) |
\(30w-10w\) | \(=200-100\) |
\(20w\) | \(=100\) |
\(w\) | \(=\dfrac{100}{20}=5\) |
\(\therefore\ \text{Amounts are equal after }5 \text{ weeks}.\)
Jeremy owns a paddle board hire company. He charges a $20 insurance fee with every hire and $35 for every hour of hire.
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Hours }(h) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 2\ \ &\ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Wage }(w) \ \rule[-1ex]{0pt}{0pt} & 20 & 90 & 160 \\
\hline
\end{array}
b. \(w=20+35h\)
c.
d. \(6\ \text{hours}\)
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Hours }(h) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 2\ \ &\ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Wage }(w) \ \rule[-1ex]{0pt}{0pt} & 40 & 90 & 160 \\
\hline
\end{array}
b. \(w=20+35h\)
c.
d. \(\text{Method 1 – Graphically by inspection}\)
\(\text{When }w=230 , h=6\ \text{hours}\)
\(\text{Method 2 – Algebraically}\)
\(w\) | \(=20+35h\) | |
\(230\) | \(=20+35h\) | |
\(35h\) | \(=230-20\) | |
\(35h\) | \(=210\) | |
\(h\) | \(=\dfrac{210}{35}=6\) |
\(\therefore\ \text{Jeremy would have to hire a board for }6\text{ hours to earn } $230.\)
Julie cleans carpets and upholstery. She charges a $40 call-out fee and $20 for every hour it takes to complete a job.
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Hours }(h) \ \rule[-1ex]{0pt}{0pt} &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ &\ \ 3\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Wage }(w) \ \rule[-1ex]{0pt}{0pt} & 40 & 60 & 80 & 100 \\
\hline
\end{array}
b. \(w=40+20h\)
c.
d. \(\text{Method 1 – Graphically by inspection}\)
\(\text{When }w=150 , h=5.5\ \text{hours}\)
\(\text{Method 2 – Algebraically}\)
\(w\) | \(=40+20h\) | |
\(150\) | \(=40+20h\) | |
\(20h\) | \(=150-40\) | |
\(20h\) | \(=110\) | |
\(h\) | \(=\dfrac{110}{20}=5.5\) |
\(\therefore\ \text{Julie would have to work for }5.5\text{ hours to earn } $150.\)
Which of the following is not true of the lines on the number plane below?
\(D\)
\(\text{Neither of the lines pass through the point }(-1,0).\)
\(\Rightarrow D\)
What do the lines on the following number plane have in common?
\(B\)
\(\text{The lines are parallel}.\)
\(\Rightarrow B\)
What do all the lines on the following number plane have in common?
\(C\)
\(\text{The lines all pass through the point }(1,2).\)
\(\therefore\ \text{They all intersect at the point }(1,2)\).
\(\Rightarrow C\)
\(y=3-x\) |
\(y=3x-1\) |
--- 1 WORK AREA LINES (style=lined) ---
a.
\(y=3-x\) |
\(y=3x-1\) |
b.
c. \((1 , 2)\)
a.
\(y=3-x\) |
\(y=3x-1\) |
b.
c. \(\text{Point of intersection: }(1 , 2)\)
Monique has correctly drawn the graph of \(y=-2x+5\) on the number plane below.
She used the points \((-1,7),\ (0,5)\) and \((1,3)\) to draw the line.
How many more different points could she have used to plot the line \(y=-2x+5\)?
\(D\)
\(\text{Straight lines are made up of an infinite number of points.}\)
\(\Rightarrow D\)
\(y=2x+1\) |
\(y=x-2\) |
--- 1 WORK AREA LINES (style=lined) ---
a.
\(y=2x+1\) |
\(y=x-2\) |
b.
c. \((-3 , -5)\)
a.
\(y=2x+1\) |
\(y=x-2\) |
b.
c. \(\text{Point of intersection: }(-3 , -5)\)
--- 2 WORK AREA LINES (style=lined) ---
a.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 3 & 2 & 1 & 0 & -1 \\
\hline
\end{array}
b. \(y=-x+1\)
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 3 & 2 & 1 & 0 & -1 \\
\hline
\end{array}
b. \(\text{The }y\ \text{values are decreasing by } 1\ \text{and when }x=0,\ \ y=1\)
\(\therefore\ \text{Rule: }y=-x+1\)
--- 2 WORK AREA LINES (style=lined) ---
a.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -3 & -1 & 1 & 3 & 5 \\
\hline
\end{array}
b. \(y=2x+1\)
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -3 & -1 & 1 & 3 & 5 \\
\hline
\end{array}
b. \(\text{The }y\ \text{values are increasing by } 2\ \text{and when }x=0,\ \ y=1\)
\(\therefore\ \text{Rule: }y=2x+1\)
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a.
b. \(\text{They form a horizontal straight line.}\)
c. \(y=2\)
a.
b. \(\text{They form a horizontal straight line.}\)
c.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 2 & 2 & 2 & 2 & 2\\
\hline
\end{array}
\(y=2\text{ regardless of the value of }x\)
\(\therefore\ \text{Rule: }y=2\)
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a.
b. \(\text{They form a straight line.}\)
c. \(y=3-x\)
a.
b. \(\text{They form a straight line.}\)
c.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 3-(-2)=5 & 3-(-1)=4 & 3-0=3 & 3-1=2 & 3-2=1\\
\hline
\end{array}
\(\therefore\ \text{Rule: }y=3-x\)
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a.
b. \(\text{They form a straight line.}\)
c. \(y=2x\)
a.
b. \(\text{They form a straight line.}\)
c.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 2\times -2=-4 & 2\times -1=-2 & 2\times 0=0 & 2\times 1=2 & 2\times 2=4\\
\hline
\end{array}
\(\therefore\ \text{Rule: }y=2x\)
Pepper uses matchsticks to make a pattern of shapes, as shown in the table below.
The equation used to show the relationship between \(T\) and \(N\) is
\(D\)
\(T\ \text{increases by 6 each shape.}\)
\(\text{Consider}\ T = 6N – 4:\)
\(\text{When}\ \ N = 1,\ T = 6\times 1 − 4 = 2\)
\(\text{When}\ \ N = 2, \ T = 6\times − 4 = 8\)
\(\text{When}\ \ N = 3,\ T = 6\times − 4 = 14\)
\(\therefore T = 6N − 4\ \text{is correct}\)
\(\Rightarrow D\)
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt}& -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -11 & -7 & -3 & 1\\
\hline
\end{array}
b. \((-1 , -11)\ \ (0 , -7)\ \ (1 , -3)\ \ (2 , 1)\)
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 4\times (-1)-7=-11 & 4\times (0)-7=-7 & 4\times 1-7=-3 &4\times 2-7=1\\
\hline
\end{array}
b. \((-1 , -11)\ \ (0 , -7)\ \ (1 , -3)\ \ (2 , 1)\)
--- 3 WORK AREA LINES (style=lined) ---
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt}& -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 6 & 5 & 4 & 3\\
\hline
\end{array}
b. \((-1 , 6)\ \ (0 , 5)\ \ (1 , 4)\ \ (2 , 3)\)
a. \(\text{Table of values}\)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 5-(-1)=6 & 5-0=5 & 5-1=4 & 5-2=3\\
\hline
\end{array}
b. \((-1 , 6)\ \ (0 , 5)\ \ (1 , 4)\ \ (2 , 3)\)
Complete the table of values below for the given rule. (2 marks)
\( v=4u-3\)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ u\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ v\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ u\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ v\ \ \rule[-1ex]{0pt}{0pt} & -11 & -7 & -3 & 1 & 5\\
\hline
\end{array}
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ u\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ v\ \ \rule[-1ex]{0pt}{0pt} & 4\times -2-3=-11 & 4\times -1-3=-7 & 4\times 0-3=-3 & 4\times 1-3=1 & 4\times 2-3=5\\
\hline
\end{array}
Complete the table of values below for the given rule. (2 marks)
\( y=-x\)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 2 & 1 & 0 & -1 & -2\\
\hline
\end{array}
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ &\ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -(-2)=2 & -(-1)=1 & -(0)=0 & -(1)=-1 & -(2)=-2\\
\hline
\end{array}
Complete the table of values below for the given rule. (2 marks)
\( y=2x+1\)
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -3 & 1 & 0 & 1\\
\hline
\end{array}
\begin{array} {|l|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ -2\ \ &\ \ -1\ \ &\ \ 0\ \ &\ \ 1\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 2\times -2+1=-3 & 2\times -1+1=-1 & 2\times 0+1=1 & 2\times 1+1=3\\
\hline
\end{array}
Complete the table of values below for the given rule. (2 marks)
\( y=2+x\)
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ 1\ \ &\ \ 2\ \ &\ \ 3\ \ &\ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ 1\ \ &\ \ 2\ \ &\ \ 3\ \ &\ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 3 & 4 & 5 & 6\\
\hline
\end{array}
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} &\ \ 1\ \ &\ \ 2\ \ &\ \ 3\ \ &\ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 2+1=3 & 2+2=4 & 2+3=5 & 2+4=6\\
\hline
\end{array}
Which rule correctly describes the pattern below?
\(B\)
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Number of squares} \rule[-1ex]{0pt}{0pt} & 1 & 2 & 3 \\
\hline
\rule{0pt}{2.5ex} \text{Number of pins} \rule[-1ex]{0pt}{0pt} & 4 & 7 & 10 \\
\hline
\end{array}
\(\therefore\ \text{The number of pins}=3\times \text{Number of squares}+1\)
\(\Rightarrow B\)
Which rule correctly describes the pattern below?
\(D\)
\(\text{Number of triangles }(t)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ ….\ \ \) |
\(\text{Number of pins }(p)\) | \(\ \ 3\ \ \) | \(\ \ 6\ \ \) | \(\ \ 9\ \ \) | \(\ \ ….\ \ \) |
\(\therefore\ \text{The number of pins}=\text{Number of triangles}\times 3\)
\(\Rightarrow D\)
Michael is making a geometric pattern using sticks to make pentagons.
The first 3 shapes in the pattern are shown below.
--- 6 WORK AREA LINES (style=lined) ---
Number of pentagons \((\large p)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ 4\ \ \) |
Number of sticks \((\large s)\) | \(\ \ 5\ \ \) |
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \(\text{Shape number }4\)
b. \(\text{Table of values}\)
\(\text{Number of pentagons }(\large p)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ 4\ \ \) |
\(\text{Number of sticks }(\large s)\) | \(\ \ 5\ \ \) | \(\ \ 9\ \ \) | \(\ \ 13\ \ \) | \(\ \ 17\ \ \) |
c. \(s=4\times p+1\)
d. \(49\)
a. \(\text{Shape number }4\)
b. \(\text{Table of values}\)
\(\text{Number of pentagons }(\large p)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ 4\ \ \) |
\(\text{Number of sticks }(\large s)\) | \(\ \ 5\ \ \) | \(\ \ 9\ \ \) | \(\ \ 13\ \ \) | \(\ \ 17\ \ \) |
c. \(\text{Rule: The number of sticks}=4\times \text{(the number of pentagons)}+1\)
\(\therefore\ \text{Rule: }\ s=4\times p+1\)
d. \(\text{Find the value of }s\ \text{when }p=12\)
\(s=4\times p+1=4\times 12+1=49\)
Michael is making a geometric pattern using pins to form triangles.
The first 3 shapes in the pattern are shown below.
--- 6 WORK AREA LINES (style=lined) ---
Number of triangles \((t)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ 4\ \ \) |
Number of pins \((p)\) | \(\ \ 3\ \ \) |
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Shape number }4\)
b. \(\text{Table of values}\)
\(\text{Number of triangles }(t)\) | \(\ \ 1\ \ \) | \(\ \ 2\ \ \) | \(\ \ 3\ \ \) | \(\ \ 4\ \ \) |
\(\text{Number of pins }(p)\) | \(\ \ 3\ \ \) | \(\ \ 5\ \ \) | \(\ \ 7\ \ \) | \(\ \ 9\ \ \) |
c. \(\text{Rule: The number of pins}=2\times \text{(the number of triangles)}+1\)
\(\therefore\ \text{Rule: }\ p=2\times t+1\)
d. \(\text{Find the value of }p\ \text{when }t=25\)
\(p=2\times t+1=2\times 25+1=51\)
A weekly gym membership can be purchased for different numbers of classes, as shown in the table below.
Number of classes | 1 | 2 | 3 | 4 |
Cost in dollars | 42 | 72 | 102 | 132 |
What is the rule connecting the number of classes purchased and the cost in dollars? (2 marks)
\(\text{Cost in dollars}=30\times \text{Number of classes}+12\)
\(\text{Firstly, look at the increase in the cost with each additional class }\)
\(\longrightarrow\ 42 , 72 , 102 , 132\ \ \longrightarrow\text{The cost increases by }$30\text{ every class}\)
\(\text{Secondly, if we look at the difference between }42\ \text{and }30\ \text{in the first class}\)
\(\text{we get }12\text{ which needs to be added to each membership}\)
\(\therefore\ \text{Rule: Cost in dollars}=30\times \text{Number of classes}+12\)
A surfboard can be hired for different numbers of hours, as shown in the table below.
Number of hours | 1 | 2 | 3 | 4 |
Cost in dollars | 35 | 50 | 65 | 80 |
What is the rule connecting the number of hours of surfboard hire and the cost in dollars? (2 marks)
\( Cost in dollars}=15\times \text{Number of hours}+20\)
\(\text{Firstly, look at the increase in the cost with each hour of hire }\)
\(\longrightarrow\ 35 , 50 , 65 , 80\ \ \longrightarrow\text{The price increases by }$15\text{ every hour}\)
\(\text{Secondly, if we look at the difference between }35\ \text{and }15\ \text{in the first hour}\)
\(\text{we get }20\text{ which needs to be added to each hiring fee}\)
\(\therefore\ \text{Rule: Cost in dollars}=15\times \text{Number of hours}+20\)
Dress sizes | |||||
Country A | 6 | 8 | 10 | 12 | 14 |
Country B | 36 | 38 | 40 | 42 | 44 |
What is the rule connecting dress sizes in Country A and Country B?
\(B\)
\(\text{Rule: Country B = Country A + 30}\)
\(\Rightarrow B\)
Billy is setting up tables for a comedy night at his club.
An X is placed for every available seat at a table, as shown below.
Which of these rules can be used to work out how many people can sit on any row of tables?
\(C\)
\(\text{Consider Option C:}\)
\(\text{1st table:}\ \ 1\times 4 +2 = 6\ \text{people}\)
\(\text{2nd table:}\ \ 2\times 4 +2 = 10\ \text{people}\)
\(\text{3rd table:}\ \ 3\times 4 +2 = 14\ \text{people}\)
\(\therefore\ \text{number of tables}\times 4 + 2\ \text{is the correct rule.}\)
\(\Rightarrow C\)
The table below has a pattern. The top and bottom numbers are connected by a rule.
Top Number | \(1\) | \(2\) | \(3\) | \(4\) |
Bottom Number | \(0\) | \(-1\) | \(-2\) | \(-3\) |
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Bottom number}=\text{Top number}\ ÷ \ 3\)
b. \(-2\)
a.
Top Number | \(1\) | \(2\) | \(3\) | \(4\) |
Bottom Number | \(1-1=0\) | \(1-2=-1\) | \(1-3=-2\) | \(1-4=-3\) |
\(\text{Rule: Bottom number}=1-\text{Top number}\)
b. \(\text{Bottom number}=1-\text{Top number}=1-21=-20\)
The table below has a pattern. The top and bottom numbers are connected by a rule.
Top Number | 21 | 18 | 15 | 12 |
Bottom Number | 7 | 6 | 5 | 4 |
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Bottom number}=\text{Top number}\ ÷ \ 3\)
b. \(-2\)
a.
Top Number | \(21\) | \(18\) | \(15\) | \(12\) |
Bottom Number | \(21\ ÷\ 3=7\) | \(18\ ÷\ 3=6\) | \(15\ ÷\ 3=5\) | \(12\ ÷\ 3=4\) |
\(\text{Rule: Bottom number}=\text{Top number}\ ÷\ 3\)
b. \(\text{Bottom number}=\text{Top number}\ ÷\ 3=-6\ ÷\ 3=-2\)
The table below has a pattern. The top and bottom numbers are connected by a rule.
Top Number | 2 | 4 | 6 | 8 |
Bottom Number | 8 | 16 | 24 | 32 |
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Bottom number}=4\times \text{Top number}\)
b. \(60\)
a.
Top Number | \(2\) | \(4\) | \(6\) | \(8\) |
Bottom Number | \(4\times 2=8\) | \(4\times 4=16\) | \(4\times 6=24\) | \(4\times 8=32\) |
\(\text{Rule: Bottom number}=4\times \text{Top number}\)
b. \(\text{Rule: Bottom number}=4\times \text{Top number}=4\times 15=60\)
Sabre is saving to buy a new skateboard.
After one week she has saved $11.
She then saves the same amount of money each week.
Week | 1 | 2 | 3 | 4 |
Total Amount Saved | $11 | $18 | $25 | $32 |
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \(\text{Rule: Amount saved}=$4 + \text{week}\times 7\)
b. \($74\)
a. \(\text{Total at end of week }1= $11\)
\(\therefore\ \text{After week 1 savings increase by }$7\ \text{per week}\)
\(\therefore\ \text{Total at end of week 2}=$4 + 2\times 7= $18\)
\(\therefore\ \text{Total at end of week 3}=$4 + 3\times 7= $25\)
\(\therefore\ \text{Total at end of week 4}=$4 + 4\times 7= $32\)
\(\therefore\ \text{Rule: Amount saved}=$4 + \text{week}\times 7\)
b. \(\text{Total savings at end of week}\ 10\)
\(= 4 + 10\times 7\)
\(= $74\)
Jerry's wage is calculated using an amount per hour plus a travel allowance.
This table shows some of Jerry's wage amounts.
Hours | 1 | 2 | 3 | 4 |
Wage | $85 | $140 | $195 | $250 |
How are Jerry's wages calculated?
\(C\)
\(\text{Testing Option C equation with the table values:}\)
\(85\) | \(=1\times 55+30\ \ \checkmark\) |
\(140\) | \(=2\times 55+30\ \ \checkmark\) |
\(195\) | \(=3\times 55+30\ \ \checkmark\) |
\(250\) | \(=4\times 55+30\ \ \checkmark\) |
\(\Rightarrow C\)
A plumber calculates the price of a job using a service fee and an amount per hour.
This table shows some of the job prices.
Hours | 1 | 2 | 3 | 4 |
Job price | $90 | $130 | $170 | $210 |
How are the jobs calculated?
\(A\)
\(\text{Testing Option A equation with the table values:}\)
\(90\) | \(= 50 + 1\times 40\ \ \checkmark\) |
\(130\) | \(= 50 + 2\times 40\ \ \checkmark\) |
\(170\) | \(= 50 + 3\times 40\ \ \checkmark\) |
\(210\) | \(= 50 + 4\times 40\ \ \checkmark\) |
\(\Rightarrow A\)
Jennifer had 20 cupcakes for sale at the beginning of the day. The table shows the number of cupcakes at the beginning of each hour.
Hour | 0 | 1 | 2 | 3 |
Cupcakes | 20 | 16 | 12 | 8 |
The table also shows a pattern in the number of cupcakes sold. The correct pattern connecting the hour and the number of cupcakes is:
\(B\)
\(\text{Consider Option B }:\ 20-\text{Hour}\times 4\)
\(\text{Hour 0}\longrightarrow\) | \(20-4\times 0=20\) | \(\checkmark\) |
\(\text{Hour 1}\longrightarrow\) | \(20-4\times 1=16\) | \(\checkmark\) |
\(\text{Hour 2}\longrightarrow\) | \(20-4\times 2=12\) | \(\checkmark\) |
\(\text{Hour 3}\longrightarrow\) | \(20-4\times 3=8\) | \(\checkmark\) |
\(\Rightarrow B\)
This table shows the growth of a plant, in centimetres, over a 4 week period.
Week | 1 | 2 | 3 | 4 |
Growth (cm) | 3 | 4 | 5 | 6 |
The table also shows a pattern in the growth of the plant. The correct pattern connecting the week and the growth is:
\(D\)
\(\text{Consider Option D }:\ \text{Week}+2\)
\(\text{Week 1}\longrightarrow\) | \(1+2=3\) | \(\checkmark\) |
\(\text{Week 2}\longrightarrow\) | \(2+2=4\) | \(\checkmark\) |
\(\text{Week 3}\longrightarrow\) | \(3+2=5\) | \(\checkmark\) |
\(\text{Week 4}\longrightarrow\) | \(4+2=6\) | \(\checkmark\) |
\(\Rightarrow D\)
This chart shows the longest run, in kilometres, that Deek ran each week over 4 weeks.
Week | 1 | 2 | 3 | 4 |
Longest Run (km) | 8 | 11 | 14 | 17 |
The chart also shows a pattern in Deek's running. The correct pattern connecting the week and the longest run is:
\(C\)
\(\text{Consider Option C }:\ \text{Week}\times 3+5\)
\(\text{Week 1}\longrightarrow\) | \(1\times 3+5=8\) | \(\checkmark\) |
\(\text{Week 2}\longrightarrow\) | \(2\times 3+5=11\) | \(\checkmark\) |
\(\text{Week 3}\longrightarrow\) | \(3\times 3+5=14\) | \(\checkmark\) |
\(\text{Week 4}\longrightarrow\) | \(4\times 3+5=17\) | \(\checkmark\) |
\(\Rightarrow C\)
The table below has a pattern. The top and bottom numbers are connected by a rule.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Top number} \rule[-1ex]{0pt}{0pt} &\ \ 1\ \ &\ \ 2\ \ &\ \ 3\ \ &\ \ 4\ \ & \ldots &\ \ ?\ \ \\
\hline
\rule{0pt}{2.5ex} \text{Bottom number} \rule[-1ex]{0pt}{0pt} & 3 & 6 & 9 & 12 & \ldots & 27 \\
\hline
\end{array}
What is the top number when the bottom number is 27?
\(C\)
\(\text{Top number}\times 3 =\ \text{Bottom number}\)
\(\text{Top number}\times 3 = 27\)
\(\therefore\ \text{Top number}\ = \dfrac{27}{3}=9\)
\(\Rightarrow C\)
The table below has a pattern. The top and bottom numbers are connected by a rule.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Top Number} \rule[-1ex]{0pt}{0pt} & 1 & 2 & 3 & 4 & ... & ? \\
\hline
\rule{0pt}{2.5ex} \text{Bottom Number} \rule[-1ex]{0pt}{0pt} & 4 & 8 & 12 & 16 & ... & 28 \\
\hline
\end{array}
What is the top number when the bottom number is 28?
\(B\)
\(\text{Top number}\ \times 4 =\ \text{Bottom number}\)
\(\text{Top number}\ \times 4 = 28\)
\(\therefore\ \text{Top number}\ = \dfrac{28}{4}=7\)
\(\Rightarrow B\)
The co-ordinates of the point \(P\) are:
\(D\)
\(\text{Coordinates are: }\ (3\dfrac{1}{2} , -2\dfrac{1}{2})\)
\(\Rightarrow D\)
The co-ordinates of the point \(C\) are:
\(A\)
\(\text{Coordinates are: }\ (4 , 2)\)
\(\Rightarrow A\)
The co-ordinates of the point \(A\) are:
\(B\)
\(\text{Coordinates are: }\ (-2 , -3)\)
\(\Rightarrow B\)
The co-ordinates of the point \(B\) are:
\(D\)
\(\text{Coordinates are: }\ (3 , -2)\)
\(\Rightarrow D\)
The co-ordinates of the point \(M\) are:
\(C\)
\(\text{Coordinates are: }\ (-1 , 2)\)
\(\Rightarrow C\)
Find the value of \(\large c\) in the formula \(c^2=a^2+b^2\) given \(a=12\) and \(b=14\). Assume \(\large c\) is positive and give your answer correct to 2 decimal places. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(c\approx 18.44\)
\(c^2\) | \(=a^2+b^2\) |
\(c^2\) | \(=12^2+14^2\) |
\(c^2\) | \(=144+196\) |
\(\sqrt{c^2}\) | \(=\sqrt{340}\) |
\(c\) | \(=18.4390\ldots\) |
\(\approx 18.44\) |
Find the value of \(\large c\) in the formula \(c^2=a^2+b^2\), given \(a=7\) and \(b=24\). Assume \(\large c\) is positive. (2 marks)
\(c=25\)
\(c^2\) | \(=a^2+b^2\) |
\(c^2\) | \(=7^2+24^2\) |
\(c^2\) | \(=49+576\) |
\(\sqrt{c^2}\) | \(=\sqrt{625}\) |
\(c\) | \(=25\) |