What is 5.4782 correct to two significant figures?
- 5.0
- 5.5
- 5.47
- 5.48
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is 5.4782 correct to two significant figures?
`B`
`5.4782 = 5.5\ (2\ text(sig. fig.))`
`=> B`
Noel's suitcase is weighed before his plane flight at 14 kilograms, to the nearest kilogram.
What is the absolute error of this measurement? (1 mark)
`text{0.5 kilograms or 500 grams}`
`text(A)text(bsolute error)` | `= 1/2 xx\ text(precision)` |
`= 1/2 xx 1\ text(kg)` | |
`= 0.5\ text{kg (or 500 grams)}` |
A person's height is measured as 1.7 metres.
What is the absolute error of this measurement?
`B`
`text{1 metre = 100 cm}\ => \ text{0.1 metre = 10 cm}`
`text(A)text(bsolute error)` | `= 1/2 xx\ text(precision)` |
`= 1/2 xx 0.1\ text(m)` | |
`= 1/2 xx 10\ text(cm)` | |
`= 5\ text(cm)` |
`=> B`
The capacity of a bottle is measured as 1.35 litres correct to the nearest 10 millilitres.
What is the percentage error for this measurement, correct to two significant figures? (2 marks)
`text(0.37%)`
`text{1.35 litres = 1350 milliliters (mL)}`
`text(A) text(bsolute error) = 1/2 xx\ text{precision} = 1/2xx10=5\ text(mL)`
`:.\ text(% error)` | `= 5/1350 xx 100` |
`=0.3703… %` | |
`=0.37%\ text{(to 2 sig.fig.)}` |
A dinosaur fossil is measured to be 1.3 metres in length.
What is the percentage error in this measurement, giving your answer correct to two decimal places? (2 marks)
`3.85%`
`text{Absolute error} = 1/2 xx \text{precision} = 1/2 xx 0.1 = 0.05\ text{m}`
`% text(error)` | `= frac(0.05)(1.3) xx 100` |
`= 3.84615%` | |
`=3.85%\ text{(to 2 d.p.)}` |
A puppy's weight is measured at 5.2 kilograms, to the nearest 100 grams.
Calculate the percentage error in this measurement, correct to one significant figure? (3 marks)
`1%`
`text{Using 1 kilogram = 1000 grams}`
`=>\ text{5.2 kilograms = 5200 grams}`
`text{Absolute error}\ =1/2 xx text{precision}\ = 1/2 xx 100 = 50\ text{g}`
`text{% error}` | `=\ frac{text{absolute error}}{text{measurement}} xx 100%` | |
`=50/5200 xx 100%` | ||
`=0.961… %` | ||
`=1%\ text{(to 1 sig. fig.)}` |
The height of palm tree is measured at 8 metres, to the nearest metre.
What is the percentage error in this measurement? (2 marks)
`6.25%`
`text{Absolute error}\ =1/2 xx text{precision}\ = 1/2 xx 1 = 0.5\ text{m}`
`text{% error}` | `=\ frac{text{absolute error}}{text{measurement}} xx 100%` | |
`=0.5/8 xx 100%` | ||
`=6.25%` |
The width of a hockey field is measured to be 45 metres, correct to the nearest metre.
What is the upper limit for the width of the hockey field? (2 marks)
`45.5\ text(m)`
`text{Absolute error}\ =1/2 xx text{precision}\ = 1/2 xx 1 = 0.5\ text{m}`
`=>\ text{True length could lie 0.5 metres either side of 45 m measurement.}`
`:.\ text(Upper limit)` | `= 45+0.5` |
`= 45.5\ text(m)` |
The width of a soccer field is measured to be 50.60 metres, correct to the nearest centimetre.
What is the lower limit for the length of the netball court?
`C`
`text{1 cm = 0.01 metre}`
`text{Absolute error}\ =1/2 xx text{precision}\ = 1/2 xx 0.01 = 0.005\ text{m}`
`:.\ text(Lower limit)` | `= 50.60-0.005` |
`= 50.595\ text(m)` |
`=>C`
A cockroach is measured in a school science experiment and its length is recorded as 5.2 cm.
What is the upper limit of accuracy of this measurement? (2 marks)
`5.25\ text(cm)`
`text{Absolute error} = 1/2 xx \text{precision} = 1/2 xx 0.1 = 0.05\ text{cm}`
`=>\ text{True length could lie 0.05 cm either side of 5.2 cm measurement.}`
`text(Upper limit)` | `= 5.2 + 0.05` |
`= 5.25\ text(cm)` |
By completing the table of values, sketch the graph of `y=x^2+3`. (3 marks)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & & & & 4 & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
By completing the table of values, sketch the graph of `y=x^2-2`. (3 marks)
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & & -1 & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & & -\frac{1}{2} & & & 3\\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
A Cartesian plane is shown.
Select the correct statement below.
`D`
`R\ text(occurs when)`
`x < 0 and y < 0`
`=>D`
If `3x-2=(x+1)/5`, find `x`. (2 marks)
`x=11/14`
`3x-2` | `= (x+1)/5` |
`5(3x-2)` | `= x+1` |
`15x-10` | `=x+1` |
`14x` | `=11` |
`x` | `=11/14` |
Find the value of `r` given `5-(2r)/3 = 1`. (2 marks)
`r=6`
`underbrace{5-(2r)/3}_text{Multiply × 3}` | `= 1xx3` |
`15-2r` | `=3` |
`2r` | `= 12` |
`r` | `=6` |
If `(n-5)/3 =4-n`, find `n`. (2 marks)
`n=17/4`
`underbrace{(n-5)/3}_{text{Multiply × 3}}` | `= underbrace{4-n}_{text{Multiply × 3}}` |
`n-5` | `=3(4-n)` |
`n-5` | `=12-3n` |
`4n` | `=17` |
`n` | `=17/4` |
If `x-(x-3)/2 =4`, find `x`. (2 marks)
`x=5`
`underbrace{x-(x-3)/2}_{text{Multiply × 2}}` | `= 4` |
`2x-(x-3)` | `= 8` |
`x+3` | `=8` |
`x` | `=5` |
If `(a-2)/5 =2`, find `a`. (2 marks)
`a=12`
`(a-2)/5` | `= 2` |
`a-2` | `= 10` |
`a` | `= 12` |
If `(y-3)/2 =5-2y`, find `y`. (2 marks)
`y=13/5`
`(y-3)/2` | `= 5-2y` |
`y-3` | `= 10-4y` |
`5y` | `= 13` |
`y` | `=13/5` |
If `(x-6)/3 =5`, find `x`. (2 marks)
`21`
`(x-6)/3` | `= 5` |
`x-6` | `= 15` |
`x` | `= 21` |
Find the value of `q` given `q/4-6 = -7`. (2 marks)
`-4`
`q/4-6` | `= -7` |
`q/4` | `= -1` |
`:.q` | `= -4` |
`y = 2x-3`
`y = 4x + 1`
Which value of `x` satisfies both of these equations?
`A`
`text(If)\ x = −2,`
`2(-2)-3` | `= -7` |
`4(-2) + 1` | `= -7` |
`:. x = -2\ \ text(satisfies both.)`
`=>A`
The daily energy requirement, `E` (kilojoules), for a person of mass `m` (kilograms) is calculated using the rule `E = 7m + 7300`.
For Elijah, `E = 7755`.
What is Elijah's mass? (2 marks)
`65\ text{kgs}`
`7755` | `= 7m + 7300` |
`7 m` | `= 455` |
`m` | `= 455/7` |
`= 65\ text(kilograms)` |
`2(3p-5)-3=17`
Solve for `p`. (2 marks)
`p=5`
`2(3p-5)-3` | `=17` | |
`6p-10-3` | `=17` | |
`6p-13` | `=17` | |
`6p` | `=30` | |
`:.p` | `=5` |
`17y+3(5-3y)-5=26`
What value of `y` makes this equation true? (2 marks)
`y=2`
`17y+3(5-3y)-5` | `=26` | |
`17y+15-9y-5` | `=26` | |
`8y+10` | `=26` | |
`8y` | `=16` | |
`:.y` | `=2` |
`6(3a+4)-12=8a-18`
What value of `a` makes this equation true? (2 marks)
`a=-3`
`6(3a+4)-12` | `=8a-18` | |
`18a+24-12` | `=8a-18` | |
`10a` | `=-12-18` | |
`10a` | `=-30` | |
`:.a` | `=-3` |
`2 (4x-2) + 1 +` |
?
|
`= 9x-3` |
What term makes this equation true for all values of `x`? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
?
|
`= x` |
`2(4x-2) + 1 +` |
?
|
`= 9x-3` |
`8x-4 + 1 +` |
?
|
`= 9x-3` |
`8x-3 +` |
?
|
`= 9x-3` |
?
|
`= x` |
Simplify the expression `(12x)^0/4 xx (5x)/3`. (1 mark)
`(5x)/12`
`(12x)^0/4 xx (5x)/3` | `= 1/4 xx (5x)/3` |
`= (5x)/12` |
Simplify the expression `(20m^0)/n xx n^2/(5m)`. (1 mark)
`(4n)/m`
`(20m^0)/n xx n^2/(5m)` | `= 20/n xx n^2/(5m)` |
`= (4n)/m` |
Express `4^(-3)` as a fraction. (1 mark)
`1/64`
`4^(-3)` | `= 1/4^3` |
`= 1/64` |
Simplify the expression `36t^7 -: 27t^3`. (2 marks)
`(4t^4)/3`
`36t^7 -: 27t^3` | `= (9 xx 4 xxt^7)/(9xx3xxt^3)` |
`= (4t^4)/3` |
Simplify the expression `24a^8 -: 3a^2`. (2 marks)
`8a^6`
`24a^8 -: 3a^2` | `= (8xx3xxa^8)/(3 xx a^2)` |
`= 8a^6` |
Simplify the expression `(5p^3)^2`. (2 marks)
`25p^6`
`(5p^3)^2` | `= 5^2 xx (p^3)^2` |
`= 25p^(3xx2)` | |
`=25p^6` |
Simplify the expression `(2x^3)^4`. (2 marks)
`16x^12`
`(2x^3)^4` | `= 2^4 xx (x^3)^4` |
`= 16x^(3xx4)` | |
`=16x^12` |
Select the expression that is equivalent to `(4^(-3) ÷ 4^6)^3`
`A`
`(4^(-3) -: 4^6)^3` | `= (4^(-3-6))^3` |
`= (4^(-9))^3` | |
`= 4^(-9 xx 3)` | |
`= 4^(-27)` |
`=>A`
Which of the following has the same value as `7^(-11)?`
`D`
`7^(-11)=1/(7^11)`
`=>D`
Which expression is equal to `6^3 xx 36^2`?
`D`
`6^3 xx 36^2` | `= (6xx6xx6) xx (6xx6)^2` |
`= (6xx6xx6) xx (6xx6) xx (6 xx6)` | |
`=6 xx 6 xx 6 xx 6 xx 6 xx 6 xx 6` |
`=>D`
`7 xx 2^3 =`
`C`
`7 xx 2^3` | `= 7 xx 2 xx 2 xx 2` |
`= 56` |
`=>C`
`30^2` is equal to which of the following?
`B`
`30^2 = 900`
`3^2 xx 2 xx 5 xx 2 xx 5`
`= 3^2 xx 10 xx 10`
`= 900`
`=>B`
Which of the following is equal to 32?
`=>A`
`2^3 xx 2^2` | `= 8 xx 4` |
`= 32` |
`=>A`
Expand and simplify the expression
`13-3(x-4)` (2 marks)
`25-3x`
`13-3(x-4)` | `=13-3x+12` | |
`=25-3x` |
Expand and simplify the expression
`3a(4a-5)-2(a-3)` (2 marks)
`12a^2-17a+6`
`3a(4a-5)-2(a-3)` | `=12a^2-15a-2a+6` | |
`=12a^2-17a+6` |
Expand the expression `-2(5x^2-3x-4)` (2 marks)
`-10x^2+6x+8`
`-2(5x^2-3x-4)=-10x^2+6x+8`
Expand the expression `3(2y^2-3y+1)` (2 marks)
`6y^2-9y+3`
`3(2y^2-3y+1)=6y^2-9y+3`
Expand and simplify the expression `4a(a-3)-5(6-a)` (2 marks)
`4a^2-7a-30`
`4a(a-3)-5(6-a)` | `=4a^2-12a-30+5a` | |
`=4a^2-7a-30` |
Expand and simplify the expression `3x(x-2)+4(x-5)` (2 marks)
`3x^2-2x-20`
`3x(x-2)+4(x-5)` | `=3x^2-6x+4x-20` | |
`=3x^2-2x-20` |
Which of the following is always equal to `a-b`?
`D`
`a-b = -b + a`
`=>D`
Which expression is equivalent to `4x^2-12x + x^3?`
`D`
`x (4x-12 + x^2)`
`= 4x^2-12x + x^3`
`=>D`
What expression is equivalent to `-(y-6)`?
`D`
`-(y-6) = -y-(-6)=-y + 6`
`=>D`
Which expression is equal to `4x-8 + 3x + 2`?
`B`
`4x-8 + 3x + 2=7x-6`
`=>B`
Which expression is equivalent to `12x + 24`?
`A`
`3 (4x + 8)` | `= 3 xx 4x + 3 xx 8` |
`= 12x + 24` |
`=>A`
Which expression is equivalent to `5-6t`?
`D`
`-6t+5`
`=>D`
Which one of the following expressions is equivalent to `4 (3m-1)`?
`C`
`4 (3m-1)`
`= (4 xx 3m)-(4 xx 1)`
`= 12m-4`
`=>C`
The expression `3x + 7 + 8x + 11` can also be written as
`B`
`3x + 7 + 8x + 11 = 11x + 18`
`=>B`
Simplify the expression `(9h)/2 -: (h)/3` (2 marks)
`(27)/2`
`(9h)/2 -: (h)/3` | `=(9h)/2 xx 3/(h)` | |
`=(9h xx 3)/(2 xx h)` | ||
`=(27)/2` |
Simplify the expression `(13x)/15 -: (2x)/5` (2 marks)
`(13)/6`
`(13x)/15 -: (2x)/5` | `=(13x)/15 xx 5/(2x)` | |
`=(13x xx 5)/(15 xx 2x)` | ||
`=(13)/6` |
Simplify the expression `(3a)/4 -: (7a)/2` (2 marks)
`(3)/14`
`(3a)/4 -: (7a)/2` | `=(3a)/4 xx 2/(7a)` | |
`=(3a xx 2)/(4 xx 7a)` | ||
`=(3)/14` |
Simplify the expression `(3p)/4 xx (8p)/9` (2 marks)
`(2p^2)/3`
`(3p)/4 xx (8p)/9` | `=(3p xx 8p)/(4 xx 9)` | |
`=(p xx 2p)/3` | ||
`=(2p^2)/3` |