The point `P(-1, -4)` lies on the Cartesian plane. It is reflected in the `x`-axis to form the point `P^(′)`.
Find the coordinates of `P^(′)`. (1 mark)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The point `P(-1, -4)` lies on the Cartesian plane. It is reflected in the `x`-axis to form the point `P^(′)`.
Find the coordinates of `P^(′)`. (1 mark)
`(-1,4)`
`text(Reflections in the)\ xtext{-axis:}`
`ytext{-coordinate has opposite sign and}\ xtext{-coordinate is the same.}`
`P(-1,-4)\ ->\ P^(′)(-1,4)`
The point `P(-3, 7)` lies on the Cartesian plane. It is reflected in the `y`-axis to form the point `P^(′)`.
Find the coordinates of `P^(′)`. (1 mark)
`(7,5)`
`text(Reflections in the)\ ytext{-axis:}`
`xtext{-coordinate has opposite sign and}\ ytext{-coordinate is the same.}`
`P(-3,7)\ ->\ P^(′)(3,7)`
`P(2,3)` is translated 3 units up and 4 units left.
The new point is then reflected in `x`-axis to form point `P^(′)`.
Find the coordinates of `P^(′)`. (2 marks)
`(-2,-6)`
`text{1st transformation:}`
`(2,3)\ ->\ (2-4, 3+3)\ ->\ (-2,6)`
`text{2nd transformation (reflection):}`
`(-2,6)\ ->\ P^(′)(-2,-6)`
`P(-3,-5)` is reflected in the `x`-axis and then translated 3 units to the right to form point `P^(′)`.
Find the coordinates of `P^(′)`. (2 marks)
`(0,5)`
`text{1st transformation (reflection):}`
`P(-3,-5)\ ->\ (-3,5)`
`text{2nd transformation:}`
`(-3,5)\ ->\ (0,5)`
The point `A(-2, 5)` lies on the Cartesian plane. It is translated five units left and then reflected in the `y`-axis.
Find the coordinates of the final image of `A`. (2 marks)
`(7,5)`
`text(1st transformation:)`
`A(-2, 5)\ ->\ (-7,5)`
`text{2nd transformation (reflection):}`
`(-7,5)\ ->\ (7,5)`
The point `P(4, -3)` lies on the Cartesian plane. It is translated four units vertically up and then reflected in the `y`-axis.
Find the coordinates of the final image of `P`. (2 marks)
`(-4,1)`
`text(1st transformation:)`
`P(4,-3)\ ->\ (4,1)`
`text{2nd transformation (reflection):}`
`(4,1)\ ->\ (-4,1)`
An equilateral triangle has vertices `O(0,0)` and `A(8,0)` as shown in the diagram below.
Find `k` if the coordinates of the third vertex are `B(4,k)`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See worked solutions)}`
`ΔOAB\ text{is equilateral}\ \ =>\ \ OA=AB=OB=8`
`text{Let}\ C=(0,4)`
`text{Consider}\ ΔOCB:`
| `OB^2` | `=OC^2+CB^2` | |
| `64` | `=16+CB^2` | |
| `CB^2` | `=48` | |
| `CB` | `=sqrt(48)` | |
| `=4sqrt(2)` |
`B=(4,4sqrt(2))`
`:.k=4sqrt(2)`
Prove the points `(1,-1), (-1,1)` and `(-sqrt3,-sqrt3)` are the vertices of a equilateral triangle. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See worked solutions)}`
`text{Let points be:}\ A(1,-1), B(-1,1) and C(-sqrt3,-sqrt3)`
`text(Using the distance formula):`
| `d_(AB)` | `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}` | |
| `=sqrt{(1-(-1))^2+(-1-1)^2}` | ||
| `=sqrt8` |
| `d_(BC)` | `=sqrt{(-1-(-sqrt3))^2+(1-(-sqrt3))^2}` | |
| `=sqrt{(-1+sqrt3)^2+(1+sqrt3)^2}` | ||
| `=sqrt(1-2sqrt3+3 +1+2sqrt3+3)` | ||
| `=sqrt8` |
| `d_(AC)` | `=sqrt{(1-(-sqrt3))^2+(-1-(-sqrt3))^2}` | |
| `=sqrt{(1+sqrt3)^2+(-1+sqrt3)^2}` | ||
| `=sqrt(1+2sqrt3+3 +1-2sqrt3+3)` | ||
| `=sqrt8` |
`text{Since}\ AB=BC=AC`
`:. ΔABC\ text{is equilateral.}`
A straight line passes through points `Q(3,-2)` and `R(-1,4)` .
Find the equation of `QR` and express in general form. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`2y+3x-5=0`
`text{Line goes through}\ (3,-2) and (-1,4).`
`text(Using the gradient formula):`
| `m` | `=(y_2-y_1)/(x_2-x_1)` | |
| `=(-2-4)/(3-(-1))` | ||
| `=-3/2` |
`text{Find equation through}\ (3,-2), m=-3/2:`
| `y-y_1` | `=m(x-x_1)` | |
| `y-(-2)` | `=-3/2(x-3)` | |
| `2(y+2)` | `=-3(x-3)` | |
| `2y+4` | `=-3x+9` | |
| `2y+3x-5` | `=0` |
A straight line passes through points `A(-2,-2)` and `B(1,5)` .
Find the equation of `AB` and express in form `y=mx+c`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y=7/3x+8/3`
`text{Line goes through}\ (-2,-2) and (1,5).`
`text(Using the gradient formula):`
| `m` | `=(y_2-y_1)/(x_2-x_1)` | |
| `=(5-(-2))/(1-(-2))` | ||
| `=7/3` |
`text{Find equation through}\ (1,5), m=7/3:`
| `y-y_1` | `=m(x-x_1)` | |
| `y-5` | `=7/3(x-1)` | |
| `y-5` | `=7/3x-7/3` | |
| `y` | `=7/3x+8/3` |
Albert drew a straight line through points `P` and `Q` as shown on the graph below.
Find the equation of Albert's line and express in general form. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3y-5x+2=0`
`text{Line goes through}\ (-2,-4) and (1,1).`
`text(Using the gradient formula):`
| `m` | `=(y_2-y_1)/(x_2-x_1)` | |
| `=(1-(-4))/(1-(-2))` | ||
| `=5/3` |
`text{Find equation through}\ (1,1), m=5/3:`
| `y-y_1` | `=m(x-x_1)` | |
| `y-1` | `=5/3(x-1)` | |
| `3y-3` | `=5x-5` | |
| `3y-5x+2` | `=0` |
Calculate the value(s) of `p` given that the points `(p,3)` and `(1,p)` are exactly 10 units apart. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`p=9\ text{or}\ -5`
`(p,3),\ \ (1,p)`
`text{Using the distance formula:}`
| `d` | `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}` | |
| `10` | `=sqrt{(p-1)^2+(3-p)^2}` | |
| `10` | `=sqrt{p^2-2p+1+9-6p+p^2}` | |
| `10` | `=sqrt{2p^2-8p+10}` | |
| `100` | `=2p^2-8p+10` | |
| `0` | `=2p^2-8p-90` | |
| `0` | `=p^2-4p-45` | |
| `0` | `=(p-9)(p+5)` |
`:.p=9\ text{or}\ -5`
Calculate the distance between the points `(2,-3)` and `(-5,4)`.
Round your answer to the nearest tenth. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`9.9\ text{units}`
`(2,-3),\ \ (-5,4)`
`text{Using the distance formula:}`
| `d` | `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}` | |
| `=sqrt{(2-(-5))^2+(-3-4)^2}` | ||
| `=sqrt{49+49}` | ||
| `=sqrt{98}` | ||
| `=9.899…` | ||
| `=9.9\ text{units (nearest tenth)}` |
Calculate the distance between the points `(6,-5)` and `(0,3)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`10\ text{units}`
`(6,-5),\ \ (0,3)`
`text{Using the distance formula:}`
| `d` | `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}` | |
| `=sqrt{(6-0)^2+(-5-3)^2}` | ||
| `=sqrt{36+64}` | ||
| `=sqrt{100}` | ||
| `=10\ text{units}` |
Calculate the distance between the point `(-6,2)` and the origin.
Give your answer in exact form. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`2sqrt{10}\ \ text{units}`
`(-6,2),\ \ (0,0)`
`text{Using the distance formula:}`
| `d` | `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}` | |
| `=sqrt{(-6-0)^2+(2-0)^2}` | ||
| `=sqrt{36+4}` | ||
| `=sqrt{40}` | ||
| `=2sqrt{10}\ \ text{units}` |
The point `C(-2,3)` is the midpoint of the interval `AB`, where `B` has coordinates `(-1,0).`
What are the coordinates of `A`? (3 marks)
`(-3,6)`
`text(Using the midpoint formula):`
| `(x_A + x_B)/2` | `= x_C` | `(y_A + y_B)/2` | `= y_C` |
| `(x_A-1)/2` | `= -2` | `(y_A + 0)/2` | `= 3` |
| `x_A` | `= -3` | `y_A` | `= 6` |
`:. A\ text(has coordinates)\ (-3,6).`
Given `C(-3,-5)` and `D(-5,1)`, find the midpoint of `CD`. (2 marks)
`(-4, -2)`
`C(-3,-5),\ \ \ D(-5,1)`
| `M` | `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)` |
| `= ( (-3-5)/2, (-5+1)/2)` | |
| `= (-4, -2)` |
Find `M`, the midpoint of `PQ`, given `P(2, -1)` and `Q(5, 7)`. (2 marks)
`M(7/2, 3)`
`P(2,-1)\ \ \ Q(5,7)`
| `M` | `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)` |
| `= ( (2+5)/2, (-1+7)/2)` | |
| `= (7/2, 3)` |
The graph of `y = 2x-3` will be drawn on this grid.
Which two points will the straight line pass through?
`D`
`text(Solution 1)`
`y = 2x-3\ text(passes through)\ (0, -3)`
`text(with a gradient of 2.)`
`:. A and C`
`text(Solution 2)`
`text{Substitute the coordinates of each point into the equation:}`
`A(-1, -5), \ B(1, -5), \ C(3, 3), \ D(-2, 1)`
`text(Only)\ A and C\ text(satisfy the equation) \ \ y = 2x-3.`
`=>D`
Leo drew a straight line through the points (0, 5) and (3, -2) as shown in the diagram below.
What is the gradient of the line that Leo drew?
`-7/3`
`text{Line passes through (0, 5) and (3, – 2)}`
| `text(Gradient)` | `= (y_2-y_1)/(x_2-x_1)` |
| `= (5-(-2))/(0-3)` | |
| `= -7/3` |
Solve the equation `(2p+2)/3+1 = (p-5)/5`, leaving your answer as a fraction. (3 marks)
`p=-40/7`
| `underbrace{(2p+2)/3+1}_text(multiply × 15)` | `=underbrace{(p-5)/5}_text(multiply × 15)` |
| `5(2p+2)+15` | `= 3(p-5)` |
| `10p+10+15` | `=3p-15` |
| `7p` | `= -40` |
| `p` | `=-40/7` |
Solve the equation `(x-1)/2+(2x+3)/3 = 2`, leaving your answer as a fraction. (3 marks)
`x=9/7`
| `underbrace{(x-1)/2+(2x+3)/3}_text(multiply × 6)` | `=2xx6` |
| `3(x-1)+2(2x+3)` | `= 12` |
| `3x-3+4x+6` | `=12` |
| `7x` | `= 9` |
| `x` | `=9/7` |
Solve `(2x+1)/3-(x+1)/8=1` for `x`. (3 marks)
`x=19/13`
| `(2x+1)/3-(x+1)/8` | `=1` | |
| `(24(2x+1))/3-(24(x+1))/8` | `=24` | |
| `8(2x+1)-3(x+1)` | `=24` | |
| `16x+8-3x-3` | `=24` | |
| `13x` | `=19` | |
| `y` | `=19/13` |
Solve the equation `(3a)/7 = (2a + 1)/2-3`, leaving your answer as a fraction. (3 marks)
`a=35/8`
| `underbrace{(3a)/7}_text(multiply × 14)` | `=underbrace{(2a + 1)/2-3}_text(multiply × 14)` |
| `2xx3a` | `= 7xx(2a+1)-14xx3` |
| `6a` | `=14a+7-42` |
| `8a` | `= 35` |
| `a` | `=35/8` |
Solve `(3y-1)/4-(y+1)/3=2` for `y`. (3 marks)
`y=31/5`
| `(3y-1)/4-(y+1)/3` | `=2` | |
| `(12(3y-1))/4-(12(y+1))/3` | `=24` | |
| `3(3y-1)-4(y+1)` | `=24` | |
| `9y-3-4y-4` | `=24` | |
| `5y` | `=31` | |
| `y` | `=31/5` |
Solve `(2a-5)/3-(a+7)/5=3` for `a`. (3 marks)
`a=13`
| `(2a-5)/3-(a+7)/5` | `=3` | |
| `(5(2a-5))/15-(3(a+7))/15` | `=3` | |
| `5(2a-5)-3(a+7)` | `=45` | |
| `10a-25-3a-21` | `=45` | |
| `7a` | `=91` | |
| `a` | `=13` |
By completing the square, solve for `b` given
`b^2-10b-125=0.` (3 marks)
`5+-5sqrt(6)`
| `b^2-10b-125` | `=0` |
| `b^2-10b+25-150` | `=0` |
| `(b-5)^2` | `=150` |
| `b-5` | `= +-sqrt(150)` |
| `b` | `=5+-sqrt(25xx6)` |
| `b` | `=5+-5sqrt(6)` |
By completing the square, solve for `x` given
`x^2-12x=-4.` (3 marks)
`6+-4sqrt(2)`
| `x^2-12x` | `=-4` |
| `x^2-12x+36` | `=-4+36` |
| `(x-6)^2` | `=32` |
| `x-6` | `= +-sqrt(32)` |
| `x` | `=6+-4sqrt(2)` |
By completing the square, solve for `y` given
`y^2-14y+37=0.` (3 marks)
`7+-2sqrt(3)`
| `y^2-14y+37` | `=0` |
| `y^2-14y+49-12` | `=0` |
| `(y-7)^2` | `=12` |
| `y-7` | `= +-sqrt(12)` |
| `y` | `=7+-2sqrt(3)` |
By completing the square, solve for `x` given
`x^2+4x-1 = 0.` (3 marks)
`-2+-sqrt(5)`
| `x^2+4x-1` | `=0` |
| `x^2+4x+4-5` | `=0` |
| `(x+2)^2` | `=5` |
| `x+2` | `= +-sqrt(5)` |
| `x` | `=-2+-sqrt(5)` |
Using the quadratic formula, find `p` given
`p^2+2p-4 = 0.` (3 marks)
`-1 +- sqrt(5)`
`p^2+2p-4 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `p` | `= (-2 +- sqrt{(2)^2-4 xx 1 xx(-4) })/ (2 xx 1)` |
| `= (-2 +- sqrt(20) )/2` | |
| `=(-2 +- 2sqrt(5) )/2` | |
| `= -1 +- sqrt(5)` |
Using the quadratic formula, find `a` given
`5a^2+7a-1 = 0.` (3 marks)
`(-7 +- sqrt(69) )/10`
`5a^2+7a-1 = 0`
`text(Using)\ a = (-b +- sqrt( b^2-4ac) )/(2a)`
| `a` | `= (-7 +- sqrt{(7)^2-4 xx 5 xx(-1) })/ (2 xx 5)` |
| `= (-7 +- sqrt(49+20) )/10` | |
| `= (-7 +- sqrt(69) )/10` |
Using the quadratic formula, solve
`3x^2-4x-2 = 0`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(2 +- sqrt(10) )/3`
`3x^2-4x-2 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `x` | `= (4 +- sqrt{(-4)^2-4 xx 3 xx(-2) })/ (2 xx 3)` |
| `= (4 +- sqrt(16+24) )/6` | |
| `= (4 +- sqrt(40) )/6` | |
| `= (4 +- 2sqrt(10) )/6` | |
| `= (2 +- sqrt(10) )/3` |
Solve the equation `21-4b^2=5b` for `b.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`b=7/4 \ text{or}\ -3`
| `21-4b^2` | `=5b` |
| `4b^2+5b-21` | `=0` |
| `(4b-7)(b+3)` | `=0` |
| `4b-7` | `=0` | `text{or}\ \ \ \ b=-3` |
| `b` | `=7/4` |
Solve the equation `12a^2+8a-15=0` for `a.` (2 marks)
`x=5/6 \ text{or}\ -3/2`
| `12a^2+8a-15` | `=0` |
| `(6a-5)(2a+3)` | `=0` |
| `6a-5` | `=0` | `text{or}\ \ \ \ a=-3/2` |
| `a` | `=5/6` |
Solve the equation `6p^2-p-7=0` for `p`. (2 marks)
`x=7/6 \ text{or}\ -1`
| `6p^2-p-7` | `=0` |
| `(6p-7)(p+1)` | `=0` |
| `6p-7` | `=0` | `text{or}\ \ \ \ p=-1` |
| `p` | `=7/6` |
Solve the equation `6x^2-3x-9=0` for `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x=3/2 \ text{or}\ -1`
| `6x^2-3x-9` | `=0` |
| `3(2x^2-x-3)` | `=0` |
| `3(2x-3)(x+1)` | `=0` |
| `2x-3` | `=0` | `text{or}\ \ \ \ x=-1` |
| `x` | `=3/2` |
Solve the equation `3q^2-10q-8=0` for `q.` (2 marks)
`q=-2/3 \ text{or}\ 4`
| `3q^2-10q-8` | `=0` |
| `(3q+2)(q-4)` | `=0` |
| `3q+2` | `=0` | `text{or}\ \ q=4` |
| `q` | `=-2/3` |
Expand and simplify `(2x+3)(4x^2-6x+9).` (2 marks)
` 8x^3+27`
| `(2x+3)(4x^2-6x+9)` | `=8x^3-12x^2+18x+12x^2-18x+27` |
| `= 8x^3+27` |
The volume of a sphere is given by `V = 4/3 pi r^3` where `r` is the radius of the sphere.
If the volume of a sphere is `220\ text(cm)^3`, find the radius, to 1 decimal place. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3.7\ \ text{cm (to 1 d.p.)}`
| `V` | `= 4/3 pi r^3` |
| `3V` | `= 4 pi r^3` |
| `r^3` | `= (3V)/(4 pi)` |
`text(When)\ \ V = 220`
| `r^3` | `= (3 xx 220)/(4 pi)` |
| `= 52.521…` | |
| `:. r` | `=root3 (52.521…)` |
| `= 3.744…\ \ \ text{(by calc)}` | |
| `= 3.7\ \ text{cm (to 1 d.p.)}` |
Make `r` the subject of the equation `V = 4/3 pir^3`. (3 marks)
`r = root(3)((3V)/(4pi))`
| `V` | `= 4/3 pir^3` |
| `3V` | `=4pir^3` |
| `(3V)/4` | `= pir^3` |
| `r^3` | `= (3V)/(4pi)` |
| `r` | `= root(3)((3V)/(4pi))` |
Make `p` the subject of the equation `c = 5/3p + 15`. (2 marks)
`p = 3/5 c-9`
| `c` | `= 5/3p + 15` |
| `5/3p` | `= c-15` |
| `p` | `= 3/5 (c-15)` |
| `= 3/5 c-9` |
Expand and simplify `(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`. (2 marks)
`30sqrt(6)-8`
`(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`
`=16sqrt(24)-4sqrt(36)+4sqrt(16)-sqrt(24)`
`=15sqrt(4xx6)-24+16`
`=30sqrt(6)-8`
Expand and simplify `(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`. (2 marks)
`4sqrt(30)+10sqrt(15)`
`(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`
`=3sqrt(120)-sqrt(60)+6sqrt(60)-2sqrt(30)`
`=3sqrt(4xx30)+5sqrt(4xx15)-2sqrt(30)`
`=6sqrt(30)+10sqrt(15)-2sqrt(30)`
`=4sqrt(30)+10sqrt(15)`
Simplify `(4p-12p^2)/3 xx (6p)/(3p^2-p)`. (3 marks)
`-8p`
| `(4p-12p^2)/3 xx (6p)/(3p^2-p)` | `= (4p(1-3p))/3 xx (6p)/(p(3p-1))` | |
| `= (8p(1-3p))/(3p-1)` | ||
| `= (-8p(3p-1))/(3p-1)` | ||
| `=-8p` |
Simplify `(9x^2)/(x+3) -: (3x)/(x^2-9)`. (3 marks)
`3x(x-3)`
| `(9x^2)/(x+3) -: (3x)/(x^2-9)` | `=(9x^2)/(x+3) xx (x^2-9)/(3x)` | |
| `=(9x^2)/(x+3) xx ((x-3)(x+3))/(3x)` | ||
| `=3x(x-3)` |
Find `a` and `b` such that `a,b` are real numbers and
`(6sqrt3-sqrt5)/(2sqrt5)= a + b sqrt15`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a= -1/2, \ b=3/5`
| `(6sqrt3-sqrt5)/(2sqrt5)` | `=(6sqrt3-sqrt5)/(2sqrt5) xx (sqrt5)/(sqrt5)` | |
| `=(sqrt5(6sqrt3-sqrt5))/(2 xx5)` | ||
| `=(6sqrt15-5)/10` | ||
| `=-1/2 + 3/5 sqrt15` |
`:. a= -1/2, \ b=3/5`
Show working to find `a` and `b` such that `a,b` are real numbers and
`(sqrt32-6)/(3sqrt2) = a + bsqrt2`. (2 marks)
`:. a = 4/3, \ b = -1`
| `(sqrt32-6)/(3sqrt2) xx (sqrt2)/(sqrt2)` | `= (sqrt2(4sqrt2-6))/6` |
| `= (8-6sqrt2)/6` | |
| `= 4/3-sqrt2` |
`:. a = 4/3, \ b = -1`
Show working to simplify `a` and `b` such that `a, b` are real numbers and
`(8-sqrt27)/(2sqrt3) = a + bsqrt3`. (2 marks)
`:. a =-3/2, \ b = 4/3`
| `(8-sqrt27)/(2sqrt3) xx (sqrt3)/(sqrt3)` | `=(sqrt3(8-3sqrt3))/(2xx3)` |
| `= (8sqrt3-9)/6` | |
| `= -3/2 + 4/3sqrt3` |
`:. a = -3/2, \ b = 4/3`
Rationalise the denominator of `1/(4sqrt 3)`. (2 marks)
`sqrt 3/12`
| `1/(4sqrt 3) xx (sqrt 3)/(sqrt 3)` | `= (sqrt 3)/(4xx3)` | |
| `= sqrt 3/12` |
Simplify the expression `4/(y^2-16)+1/(3y-12)` (3 marks)
`(y+16)/(3(y^2-16))`
| `4/(y^2-16)+1/(3y-12)` | `=4/((y-4)(y+4))+1/(3(y-4))` | |
| `=12/(3(y-4)(y+4))+(y+4)/(3(y-4)(y+4))` | ||
| `=(y+16)/(3(y-4)(y+4))` |
Simplify the expression `(5a-15)/3xx(6a)/(a^2-9)` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(10a)/(a+3)`
| `(5a-15)/3xx(6a)/(a^2-9)` | `=(5(a-3))/3xx(2xx3xxa)/((a-3)(a+3))` | |
| `=(10a)/(a+3)` |
Factorise the expression `5/(x^2-1)-3/(x-1)` (3 marks)
`(2-3x)/((x-1)(x+1))`
| `5/(x^2-1)-3/(x-1)` | `=5/((x+1)(x-1))-3/(x-1)` | |
| `=5/((x+1)(x-1))-(3(x+1))/((x+1)(x-1))` | ||
| `=(5-3(x+1))/((x-1)(x+1))` | ||
| `=(2-3x)/((x-1)(x+1))` |
Factorise the expression `5/(b^2-b)-2/(b^2-1)` (3 marks)
`(3b+5)/(b(b-1)(b+1))`
| `5/(b^2-b)-2/(b^2-1)` | `=5/(b(b-1))-2/((b+1)(b-1))` | |
| `=(5(b+1))/(b(b-1)(b+1))-(2b)/(b(b-1)(b+1))` | ||
| `=(5b+5-2b)/(b(b-1)(b+1))` | ||
| `=(3b+5)/(b(b-1)(b+1))` |
Factorise the expression `(x^2-7x+12)/(x-3)` (2 marks)
`x-4`
| `(x^2-7x+12)/(x-3)` | `=((x-3)(x-4))/(x-3)` | |
| `=x-4` |