SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Transformations, SMB-009

The point  `P(-1, -4)`  lies on the Cartesian plane. It is reflected in the `x`-axis to form the point `P^(′)`.

Find the coordinates of `P^(′)`.  (1 mark)

Show Answers Only

`(-1,4)`

Show Worked Solution

`text(Reflections in the)\ xtext{-axis:}`

`ytext{-coordinate has opposite sign and}\ xtext{-coordinate is the same.}`

`P(-1,-4)\ ->\ P^(′)(-1,4)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-40-Reflection

Transformations, SMB-008

The point  `P(-3, 7)`  lies on the Cartesian plane. It is reflected in the `y`-axis to form the point `P^(′)`.

Find the coordinates of `P^(′)`.  (1 mark)

Show Answers Only

`(7,5)`

Show Worked Solution

`text(Reflections in the)\ ytext{-axis:}`

`xtext{-coordinate has opposite sign and}\ ytext{-coordinate is the same.}`

`P(-3,7)\ ->\ P^(′)(3,7)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-40-Reflection

Transformations, SMB-007

`P(2,3)` is translated 3 units up and 4 units left.

The new point is then reflected in `x`-axis to form point `P^(′)`.

Find the coordinates of `P^(′)`.  (2 marks)

Show Answers Only

`(-2,-6)`

Show Worked Solution

`text{1st transformation:}`

`(2,3)\ ->\ (2-4, 3+3)\ ->\ (-2,6)`
 

`text{2nd transformation (reflection):}`

`(-2,6)\ ->\ P^(′)(-2,-6)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-50-Combinations

Transformations, SMB-006

`P(-3,-5)` is reflected in the `x`-axis and then translated 3 units to the right to form point `P^(′)`.

Find the coordinates of `P^(′)`.  (2 marks)

Show Answers Only

`(0,5)`

Show Worked Solution

`text{1st transformation (reflection):}`

`P(-3,-5)\ ->\ (-3,5)`
 

`text{2nd transformation:}`

`(-3,5)\ ->\ (0,5)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-50-Combinations

Transformations, SMB-005

The point  `A(-2, 5)`  lies on the Cartesian plane. It is translated five units left and then reflected in the `y`-axis.

Find the coordinates of the final image of `A`.  (2 marks)

Show Answers Only

`(7,5)`

Show Worked Solution

`text(1st transformation:)`

`A(-2, 5)\ ->\ (-7,5)`
 

`text{2nd transformation (reflection):}`

`(-7,5)\ ->\ (7,5)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-50-Combinations

Transformations, SMB-004

The point  `P(4, -3)`  lies on the Cartesian plane. It is translated four units vertically up and then reflected in the `y`-axis.

Find the coordinates of the final image of `P`.  (2 marks)

Show Answers Only

`(-4,1)`

Show Worked Solution

`text(1st transformation:)`

`P(4,-3)\ ->\ (4,1)`
 

`text{2nd transformation (reflection):}`

`(4,1)\ ->\ (-4,1)`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-50-Combinations

Cartesian Plane, SMB-021

An equilateral triangle has vertices  `O(0,0)` and `A(8,0)` as shown in the diagram below.

Find `k` if the coordinates of the third vertex are `B(4,k)`.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See worked solutions)}`

Show Worked Solution

`ΔOAB\ text{is equilateral}\ \ =>\ \ OA=AB=OB=8`

`text{Let}\ C=(0,4)`

`text{Consider}\ ΔOCB:`

`OB^2` `=OC^2+CB^2`  
`64` `=16+CB^2`  
`CB^2` `=48`  
`CB` `=sqrt(48)`  
  `=4sqrt(2)`  

 
`B=(4,4sqrt(2))`

`:.k=4sqrt(2)`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-70-Geometry problems

Cartesian Plane, SMB-020

Prove the points `(1,-1), (-1,1)` and `(-sqrt3,-sqrt3)` are the vertices of a equilateral triangle.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See worked solutions)}`

Show Worked Solution

`text{Let points be:}\ A(1,-1), B(-1,1) and C(-sqrt3,-sqrt3)`

`text(Using the distance formula):`

`d_(AB)` `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}`  
  `=sqrt{(1-(-1))^2+(-1-1)^2}`  
  `=sqrt8`  

 

`d_(BC)` `=sqrt{(-1-(-sqrt3))^2+(1-(-sqrt3))^2}`  
  `=sqrt{(-1+sqrt3)^2+(1+sqrt3)^2}`  
  `=sqrt(1-2sqrt3+3 +1+2sqrt3+3)`  
  `=sqrt8`  

 

`d_(AC)` `=sqrt{(1-(-sqrt3))^2+(-1-(-sqrt3))^2}`  
  `=sqrt{(1+sqrt3)^2+(-1+sqrt3)^2}`  
  `=sqrt(1+2sqrt3+3 +1-2sqrt3+3)`  
  `=sqrt8`  

 
`text{Since}\ AB=BC=AC`

`:. ΔABC\ text{is equilateral.}`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-70-Geometry problems

Cartesian Plane, SMB-019

A straight line passes through points `Q(3,-2)` and `R(-1,4)` .

Find the equation of `QR` and express in general form.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`2y+3x-5=0`

Show Worked Solution

`text{Line goes through}\ (3,-2) and (-1,4).`

`text(Using the gradient formula):`

`m` `=(y_2-y_1)/(x_2-x_1)`  
  `=(-2-4)/(3-(-1))`  
  `=-3/2`  

 
`text{Find equation through}\ (3,-2), m=-3/2:`

`y-y_1` `=m(x-x_1)`  
`y-(-2)` `=-3/2(x-3)`  
`2(y+2)` `=-3(x-3)`  
`2y+4` `=-3x+9`  
`2y+3x-5` `=0`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-30-Point-gradient

Cartesian Plane, SMB-018

A straight line passes through points `A(-2,-2)` and `B(1,5)` .

Find the equation of `AB` and express in form  `y=mx+c`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y=7/3x+8/3`

Show Worked Solution

`text{Line goes through}\ (-2,-2) and (1,5).`

`text(Using the gradient formula):`

`m` `=(y_2-y_1)/(x_2-x_1)`  
  `=(5-(-2))/(1-(-2))`  
  `=7/3`  

 
`text{Find equation through}\ (1,5), m=7/3:`

`y-y_1` `=m(x-x_1)`  
`y-5` `=7/3(x-1)`  
`y-5` `=7/3x-7/3`  
`y` `=7/3x+8/3`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-30-Point-gradient

Cartesian Plane, SMB-017

Albert drew a straight line through points `P` and `Q` as shown on the graph below.

Find the equation of Albert's line and express in general form.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`3y-5x+2=0`

Show Worked Solution

`text{Line goes through}\ (-2,-4) and (1,1).`

`text(Using the gradient formula):`

`m` `=(y_2-y_1)/(x_2-x_1)`  
  `=(1-(-4))/(1-(-2))`  
  `=5/3`  

 
`text{Find equation through}\ (1,1), m=5/3:`

`y-y_1` `=m(x-x_1)`  
`y-1` `=5/3(x-1)`  
`3y-3` `=5x-5`  
`3y-5x+2` `=0`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-30-Point-gradient

Cartesian Plane, SMB-016

Calculate the value(s) of `p` given that the points `(p,3)` and `(1,p)` are exactly 10 units apart.  (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`p=9\ text{or}\ -5`

Show Worked Solution

`(p,3),\ \ (1,p)`

`text{Using the distance formula:}`

`d` `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}`  
`10` `=sqrt{(p-1)^2+(3-p)^2}`  
`10` `=sqrt{p^2-2p+1+9-6p+p^2}`  
`10` `=sqrt{2p^2-8p+10}`  
`100` `=2p^2-8p+10`  
`0` `=2p^2-8p-90`  
`0` `=p^2-4p-45`  
`0` `=(p-9)(p+5)`  

 
`:.p=9\ text{or}\ -5`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-15-Distance

Cartesian Plane, SMB-015

Calculate the distance between the points `(2,-3)` and `(-5,4)`.

Round your answer to the nearest tenth.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`9.9\ text{units}`

Show Worked Solution

`(2,-3),\ \ (-5,4)`

`text{Using the distance formula:}`

`d` `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}`  
  `=sqrt{(2-(-5))^2+(-3-4)^2}`  
  `=sqrt{49+49}`  
  `=sqrt{98}`  
  `=9.899…`  
  `=9.9\ text{units (nearest tenth)}`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-15-Distance

Cartesian Plane, SMB-014

Calculate the distance between the points `(6,-5)` and `(0,3)`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`10\ text{units}`

Show Worked Solution

`(6,-5),\ \ (0,3)`

`text{Using the distance formula:}`

`d` `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}`  
  `=sqrt{(6-0)^2+(-5-3)^2}`  
  `=sqrt{36+64}`  
  `=sqrt{100}`  
  `=10\ text{units}`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-15-Distance

Cartesian Plane, SMB-013

Calculate the distance between the point `(-6,2)` and the origin.

Give your answer in exact form.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`2sqrt{10}\ \ text{units}`

Show Worked Solution

`(-6,2),\ \ (0,0)`

`text{Using the distance formula:}`

`d` `=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}`  
  `=sqrt{(-6-0)^2+(2-0)^2}`  
  `=sqrt{36+4}`  
  `=sqrt{40}`  
  `=2sqrt{10}\ \ text{units}`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-15-Distance

Cartesian Plane, SMB-012

What is the equation of the line `l`?  (2 marks)
 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`y = -2x + 2`

Show Worked Solution

`l\ text{passes through (0, 2) and (1, 0)}`

`text(Gradient)` `= (y_2-y_1)/(x_2-x_1)`
  `= (0-2)/(1-0)`
  `= -2`

 
`y\ text(intercept = 2)`

`:.y = -2x + 2`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-30-Point-gradient

Cartesian Plane, SMB-011

Rambo drew a line as shown on the grid below.

What is the gradient of Rambo's line?  (3 marks)

Show Answers Only

`-7/5`

Show Worked Solution

`text{Line goes through}\ (-3,4) and (2,-3).`

`text(Using the gradient formula):`

`m` `=(y_2-y_1)/(x_2-x_1)`  
  `=(-3-4)/(2-(-3))`  
  `=-7/5`  

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-20-Gradient

Cartesian Plane, SMB-010

The point  `C(-2,3)`  is the midpoint of the interval `AB`, where `B` has coordinates  `(-1,0).`

What are the coordinates of  `A`?  (3 marks)

Show Answers Only

`(-3,6)`

Show Worked Solution

`text(Using the midpoint formula):`

`(x_A + x_B)/2` `= x_C` `(y_A + y_B)/2` `= y_C`
`(x_A-1)/2` `= -2` `(y_A + 0)/2` `= 3`
`x_A` `= -3` `y_A` `= 6`

 
`:. A\ text(has coordinates)\ (-3,6).`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Cartesian Plane, SMB-009

Given  `C(-3,-5)`  and  `D(-5,1)`, find the midpoint of `CD`.  (2 marks)

Show Answers Only

`(-4, -2)`

Show Worked Solution

`C(-3,-5),\ \ \ D(-5,1)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (-3-5)/2, (-5+1)/2)`
  `= (-4, -2)`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Cartesian Plane, SMB-008

Find `M`, the midpoint of `PQ`, given `P(2, -1)`  and  `Q(5, 7)`.  (2 marks)

Show Answers Only

`M(7/2, 3)`

Show Worked Solution

`P(2,-1)\ \ \ Q(5,7)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (2+5)/2, (-1+7)/2)`
  `= (7/2, 3)`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Cartesian Plane, SMB-004 MC

The graph of   `y = 2x-3`  will be drawn on this grid.

Which two points will the straight line pass through?

  1. `C and D`
  2. `D and A`
  3. `B and D`
  4. `A and C`
Show Answers Only

`D`

Show Worked Solution

`text(Solution 1)`

`y = 2x-3\ text(passes through)\ (0, -3)`

`text(with a gradient of 2.)`

`:. A and C`
 

`text(Solution 2)`

`text{Substitute the coordinates of each point into the equation:}`

`A(-1, -5), \ B(1, -5), \ C(3, 3), \ D(-2, 1)`

`text(Only)\ A and C\ text(satisfy the equation) \ \ y = 2x-3.`

`=>D`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-35-Sketch graph

Transformations, SMB-003 MC

Jamie is drawing a square on this grid.

He has drawn two corner points as shown.

 

Jamie draws the third corner at (5, 6).

Where will the other corner of the square be?

  1. `(1,2)`
  2. `(2,1)`
  3. `(1,6)`
  4. `(2,2)`
Show Answers Only

`A`

Show Worked Solution

`text{Corner at point}\ (1, 2).`

`=>A`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-10-Symmetry

Transformations, SMB-002 MC

Bobby places a disc at  (4, −2).

He then moves the disc up 4 units.

What are the coordinates of the new position of the disc?
  

  1. `(8,-2)`
  2. `(4,2)`
  3. `(4,-6)`
  4. `(0,-2)`
Show Answers Only

`B`

Show Worked Solution

`=>B`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-30-Translations

Transformations, SMB-001 MC

Point `Q` is translated down 3 units.

What are the new coordinates of  `Q`?

  1. `(4,5)`
  2. `(1,2)`
  3. `(7,2)`
  4. `(4,-1)`
Show Answers Only

`D`

Show Worked Solution

`Q\ text(has coordinates)\ (4,2)`

`text(When translated 3 down, the)\ ytext(-value decreases by 3.)`

`:.\ text{New coordinates are  (4, −1)}.`

`=>D`

Filed Under: Transformations Tagged With: num-title-ct-pathc, smc-4420-30-Translations

Linear Relationships, SMB-001 MC

Leo drew a straight line through the points (0, 5) and (3, -2) as shown in the diagram below.
 


  

What is the gradient of the line that Leo drew?

  1. `7/3`
  2. `3/7`
  3. `-3/7`
  4. `-7/3`
Show Answers Only

`-7/3`

Show Worked Solution

`text{Line passes through (0, 5) and (3, – 2)}`

`text(Gradient)` `= (y_2-y_1)/(x_2-x_1)`
  `= (5-(-2))/(0-3)`
  `= -7/3`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-20-Gradient

Algebraic Fractions, SMB-050

Solve the equation  `(2p+2)/3+1 = (p-5)/5`, leaving your answer as a fraction.  (3 marks)

Show Answers Only

`p=-40/7`

Show Worked Solution
`underbrace{(2p+2)/3+1}_text(multiply × 15)` `=underbrace{(p-5)/5}_text(multiply × 15)`
`5(2p+2)+15` `= 3(p-5)`
`10p+10+15` `=3p-15`
`7p` `= -40`
`p` `=-40/7`

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Algebraic Fractions, SMB-049

Solve the equation  `(x-1)/2+(2x+3)/3 = 2`, leaving your answer as a fraction.  (3 marks)

Show Answers Only

`x=9/7`

Show Worked Solution
`underbrace{(x-1)/2+(2x+3)/3}_text(multiply × 6)` `=2xx6`
`3(x-1)+2(2x+3)` `= 12`
`3x-3+4x+6` `=12`
`7x` `= 9`
`x` `=9/7`

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Algebraic Fractions, SMB-048

Solve  `(2x+1)/3-(x+1)/8=1`  for  `x`.  (3 marks)

Show Answers Only

`x=19/13`

Show Worked Solution
`(2x+1)/3-(x+1)/8` `=1`  
`(24(2x+1))/3-(24(x+1))/8` `=24`  
`8(2x+1)-3(x+1)` `=24`  
`16x+8-3x-3` `=24`  
`13x` `=19`  
`y` `=19/13`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Algebraic Fractions, SMB-047

Solve the equation  `(3a)/7 = (2a + 1)/2-3`, leaving your answer as a fraction.  (3 marks)

Show Answers Only

`a=35/8`

Show Worked Solution
`underbrace{(3a)/7}_text(multiply × 14)` `=underbrace{(2a + 1)/2-3}_text(multiply × 14)`
`2xx3a` `= 7xx(2a+1)-14xx3`
`6a` `=14a+7-42`
`8a` `= 35`
`a` `=35/8`

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Algebraic Fractions, SMB-046

Solve  `(3y-1)/4-(y+1)/3=2`  for  `y`.  (3 marks)

Show Answers Only

`y=31/5`

Show Worked Solution
`(3y-1)/4-(y+1)/3` `=2`  
`(12(3y-1))/4-(12(y+1))/3` `=24`  
`3(3y-1)-4(y+1)` `=24`  
`9y-3-4y-4` `=24`  
`5y` `=31`  
`y` `=31/5`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Algebraic Fractions, SMB-045

Solve  `(2a-5)/3-(a+7)/5=3`  for  `a`.  (3 marks)

Show Answers Only

`a=13`

Show Worked Solution
`(2a-5)/3-(a+7)/5` `=3`  
`(5(2a-5))/15-(3(a+7))/15` `=3`  
`5(2a-5)-3(a+7)` `=45`  
`10a-25-3a-21` `=45`  
`7a` `=91`  
`a` `=13`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4402-40-Multiple fractions

Quadratics and Cubics, SMB-041

By completing the square, solve for `b` given 

   `b^2-10b-125=0.`  (3 marks)

Show Answers Only

`5+-5sqrt(6)`

Show Worked Solution
`b^2-10b-125` `=0`
`b^2-10b+25-150` `=0`
`(b-5)^2` `=150`
`b-5` `= +-sqrt(150)`
`b` `=5+-sqrt(25xx6)`
`b` `=5+-5sqrt(6)`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-45-Completing the square

Quadratics and Cubics, SMB-040

By completing the square, solve for `x` given 

   `x^2-12x=-4.`  (3 marks)

Show Answers Only

`6+-4sqrt(2)`

Show Worked Solution
`x^2-12x` `=-4`
`x^2-12x+36` `=-4+36`
`(x-6)^2` `=32`
`x-6` `= +-sqrt(32)`
`x` `=6+-4sqrt(2)`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-45-Completing the square

Quadratics and Cubics, SMB-039

By completing the square, solve for `y` given 

   `y^2-14y+37=0.`  (3 marks)

Show Answers Only

`7+-2sqrt(3)`

Show Worked Solution
`y^2-14y+37` `=0`
`y^2-14y+49-12` `=0`
`(y-7)^2` `=12`
`y-7` `= +-sqrt(12)`
`y` `=7+-2sqrt(3)`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-45-Completing the square

Quadratics and Cubics, SMB-038

By completing the square, solve for `x` given 

   `x^2+4x-1 = 0.`  (3 marks)

Show Answers Only

`-2+-sqrt(5)`

Show Worked Solution
`x^2+4x-1` `=0`
`x^2+4x+4-5` `=0`
`(x+2)^2` `=5`
`x+2` `= +-sqrt(5)`
`x` `=-2+-sqrt(5)`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-45-Completing the square

Quadratics and Cubics, SMB-037

Using the quadratic formula, find `p` given

   `p^2+2p-4 = 0.`  (3 marks)

Show Answers Only

`-1 +- sqrt(5)`

Show Worked Solution

`p^2+2p-4 = 0`

`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`

`p` `= (-2 +- sqrt{(2)^2-4 xx 1 xx(-4) })/ (2 xx 1)`
  `= (-2 +- sqrt(20) )/2`
  `=(-2 +- 2sqrt(5) )/2`
  `= -1 +- sqrt(5)`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-40-Quadratic formula

Quadratics and Cubics, SMB-036

Using the quadratic formula, find `a` given

   `5a^2+7a-1 = 0.`  (3 marks)

Show Answers Only

`(-7 +- sqrt(69) )/10`

Show Worked Solution

`5a^2+7a-1 = 0`

`text(Using)\ a = (-b +- sqrt( b^2-4ac) )/(2a)`

`a` `= (-7 +- sqrt{(7)^2-4 xx 5 xx(-1) })/ (2 xx 5)`
  `= (-7 +- sqrt(49+20) )/10`
  `= (-7 +- sqrt(69) )/10`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-40-Quadratic formula

Quadratics and Cubics, SMB-035

Using the quadratic formula, solve

   `3x^2-4x-2 = 0`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(2 +- sqrt(10) )/3`

Show Worked Solution

`3x^2-4x-2 = 0`

`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`

`x` `= (4 +- sqrt{(-4)^2-4 xx 3 xx(-2) })/ (2 xx 3)`
  `= (4 +- sqrt(16+24) )/6`
  `= (4 +- sqrt(40) )/6`
  `= (4 +- 2sqrt(10) )/6`
  `= (2 +- sqrt(10) )/3`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-40-Quadratic formula

Quadratics and Cubics, SMB-034

Solve the equation  `21-4b^2=5b`  for `b.`  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`b=7/4 \ text{or}\ -3`

Show Worked Solution
`21-4b^2` `=5b`
`4b^2+5b-21` `=0`
`(4b-7)(b+3)` `=0`

 

`4b-7` `=0` `text{or}\ \ \ \ b=-3`
`b` `=7/4`  

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-35-Quadratics (Non-monic)

Quadratics and Cubics, SMB-033

Solve the equation  `12a^2+8a-15=0`  for `a.`  (2 marks)

Show Answers Only

`x=5/6 \ text{or}\ -3/2`

Show Worked Solution
`12a^2+8a-15` `=0`
`(6a-5)(2a+3)` `=0`

 

`6a-5` `=0` `text{or}\ \ \ \ a=-3/2`
`a` `=5/6`  

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-35-Quadratics (Non-monic)

Quadratics and Cubics, SMB-033

Solve the equation  `6p^2-p-7=0`  for `p`.  (2 marks)

Show Answers Only

`x=7/6 \ text{or}\ -1`

Show Worked Solution
`6p^2-p-7` `=0`
`(6p-7)(p+1)` `=0`

 

`6p-7` `=0` `text{or}\ \ \ \ p=-1`
`p` `=7/6`  

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-35-Quadratics (Non-monic)

Quadratics and Cubics, SMB-032

Solve the equation  `6x^2-3x-9=0`  for `x`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`x=3/2 \ text{or}\ -1`

Show Worked Solution
`6x^2-3x-9` `=0`
`3(2x^2-x-3)` `=0`
`3(2x-3)(x+1)` `=0`

 

`2x-3` `=0` `text{or}\ \ \ \ x=-1`
`x` `=3/2`  

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-35-Quadratics (Non-monic)

Quadratics and Cubics, SMB-031

Solve the equation  `3q^2-10q-8=0`  for `q.`  (2 marks)

Show Answers Only

`q=-2/3 \ text{or}\ 4`

Show Worked Solution
`3q^2-10q-8` `=0`
`(3q+2)(q-4)` `=0`

 

`3q+2` `=0` `text{or}\ \ q=4`
`q` `=-2/3`  

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-35-Quadratics (Non-monic)

Algebraic Techniques, SMB-066

Expand and simplify  `(2x+3)(4x^2-6x+9).`  (2 marks)

Show Answers Only

` 8x^3+27`

Show Worked Solution
`(2x+3)(4x^2-6x+9)` `=8x^3-12x^2+18x+12x^2-18x+27`
  `= 8x^3+27`

Filed Under: Distributive Laws Tagged With: num-title-ct-pathc, smc-4357-40-Binomial expansion

Non-Linear, SMB-024

The volume of a sphere is given by  `V = 4/3 pi r^3`  where  `r`  is the radius of the sphere.

If the volume of a sphere is  `220\ text(cm)^3`, find the radius, to 1 decimal place.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`3.7\ \ text{cm  (to 1 d.p.)}`

Show Worked Solution
`V` `= 4/3 pi r^3`
`3V` `= 4 pi r^3`
`r^3` `= (3V)/(4 pi)`

 

`text(When)\ \ V = 220`

`r^3` `= (3 xx 220)/(4 pi)`
  `= 52.521…`
`:. r` `=root3 (52.521…)`
  `= 3.744…\ \ \ text{(by calc)}`
  `= 3.7\ \ text{cm   (to 1 d.p.)}`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-10-Rearrange equation, smc-4386-15-Substitution, smc-4386-50-Cubics

Non-Linear, SMB-023

Make  `r`  the subject of the equation  `V = 4/3 pir^3`.  (3 marks)

Show Answers Only

`r = root(3)((3V)/(4pi))`

Show Worked Solution
`V` `= 4/3 pir^3`
`3V` `=4pir^3`
`(3V)/4` `= pir^3`
`r^3` `= (3V)/(4pi)`
`r` `= root(3)((3V)/(4pi))`

Filed Under: Quadratics and Cubics Tagged With: num-title-ct-pathc, smc-4386-10-Rearrange equation, smc-4386-50-Cubics

Equations, SMB-001

Make `p` the subject of the equation  `c = 5/3p + 15`.  (2 marks)

Show Answers Only

`p = 3/5 c-9`

Show Worked Solution
`c` `= 5/3p + 15`
`5/3p` `= c-15`
`p` `= 3/5 (c-15)`
  `= 3/5 c-9`

Filed Under: Linear Tagged With: num-title-ct-pathc, smc-4362-20-Formula rearrange

Indices, SMB-029

Expand and simplify  `(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`.   (2 marks)

Show Answers Only

`30sqrt(6)-8`

Show Worked Solution

`(4sqrt(3)+sqrt(2))(4sqrt(8)-sqrt(12))`

`=16sqrt(24)-4sqrt(36)+4sqrt(16)-sqrt(24)`

`=15sqrt(4xx6)-24+16`

`=30sqrt(6)-8`

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-70-Surds

Indices, SMB-028

Expand and simplify  `(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`.   (2 marks)

Show Answers Only

`4sqrt(30)+10sqrt(15)`

Show Worked Solution

`(sqrt(20)+2sqrt(10))(3sqrt(6)-sqrt(3))`

`=3sqrt(120)-sqrt(60)+6sqrt(60)-2sqrt(30)`

`=3sqrt(4xx30)+5sqrt(4xx15)-2sqrt(30)`

`=6sqrt(30)+10sqrt(15)-2sqrt(30)`

`=4sqrt(30)+10sqrt(15)`

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-70-Surds

Algebraic Techniques, SMB-073

Simplify  `(4p-12p^2)/3 xx (6p)/(3p^2-p)`.  (3 marks)

Show Answers Only

`-8p`

Show Worked Solution
`(4p-12p^2)/3 xx (6p)/(3p^2-p)` `= (4p(1-3p))/3 xx (6p)/(p(3p-1))`  
  `= (8p(1-3p))/(3p-1)`  
  `= (-8p(3p-1))/(3p-1)`  
  `=-8p`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-14-Multiply

Algebraic Techniques, SMB-072

Simplify  `(9x^2)/(x+3) -: (3x)/(x^2-9)`.   (3 marks)

Show Answers Only

`3x(x-3)`

Show Worked Solution
`(9x^2)/(x+3) -: (3x)/(x^2-9)` `=(9x^2)/(x+3) xx  (x^2-9)/(3x)`  
  `=(9x^2)/(x+3) xx  ((x-3)(x+3))/(3x)`  
  `=3x(x-3)`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-16-Divide

Indices, SMB-026

Find `a`  and  `b`  such that  `a,b`  are real numbers and

`(6sqrt3-sqrt5)/(2sqrt5)= a + b sqrt15`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`a= -1/2, \ b=3/5`

Show Worked Solution
`(6sqrt3-sqrt5)/(2sqrt5)` `=(6sqrt3-sqrt5)/(2sqrt5) xx (sqrt5)/(sqrt5)`  
  `=(sqrt5(6sqrt3-sqrt5))/(2 xx5)`  
  `=(6sqrt15-5)/10`  
  `=-1/2 + 3/5 sqrt15`  

  
`:. a= -1/2, \ b=3/5`

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-75-Surd denominators

Indices, SMB-025

Show working to find `a` and `b` such that  `a,b`  are real numbers and

`(sqrt32-6)/(3sqrt2) = a + bsqrt2`.  (2 marks)

Show Answers Only

`:. a = 4/3, \ b = -1`

Show Worked Solution
`(sqrt32-6)/(3sqrt2) xx (sqrt2)/(sqrt2)` `= (sqrt2(4sqrt2-6))/6`
  `= (8-6sqrt2)/6`
  `= 4/3-sqrt2`

 
`:. a = 4/3, \ b = -1`

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-75-Surd denominators

Indices, SMB-024

Show working to simplify `a` and `b` such that  `a, b`  are real numbers and

`(8-sqrt27)/(2sqrt3) = a + bsqrt3`.   (2 marks)

Show Answers Only

`:. a =-3/2, \ b = 4/3`

Show Worked Solution
`(8-sqrt27)/(2sqrt3) xx (sqrt3)/(sqrt3)` `=(sqrt3(8-3sqrt3))/(2xx3)`
  `= (8sqrt3-9)/6`
  `= -3/2 + 4/3sqrt3`

 
`:. a = -3/2, \ b = 4/3`

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-75-Surd denominators

Indices, SMB-023

Rationalise the denominator of  `1/(4sqrt 3)`.  (2 marks)

Show Answers Only

`sqrt 3/12`

Show Worked Solution
`1/(4sqrt 3) xx (sqrt 3)/(sqrt 3)` `= (sqrt 3)/(4xx3)`  
  `= sqrt 3/12`  

Filed Under: Indices Tagged With: num-title-ct-pathc, smc-4228-75-Surd denominators

Algebraic Techniques, SMB-071

Simplify the expression  `4/(y^2-16)+1/(3y-12)`  (3 marks)

Show Answers Only

`(y+16)/(3(y^2-16))`

Show Worked Solution
`4/(y^2-16)+1/(3y-12)` `=4/((y-4)(y+4))+1/(3(y-4))`  
  `=12/(3(y-4)(y+4))+(y+4)/(3(y-4)(y+4))`  
  `=(y+16)/(3(y-4)(y+4))`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-10-Addition

Algebraic Techniques, SMB-070

Simplify the expression  `(5a-15)/3xx(6a)/(a^2-9)`  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(10a)/(a+3)`

Show Worked Solution
`(5a-15)/3xx(6a)/(a^2-9)` `=(5(a-3))/3xx(2xx3xxa)/((a-3)(a+3))`  
  `=(10a)/(a+3)`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-14-Multiply

Algebraic Techniques, SMB-069

Factorise the expression  `5/(x^2-1)-3/(x-1)`  (3 marks)

Show Answers Only

`(2-3x)/((x-1)(x+1))`

Show Worked Solution
`5/(x^2-1)-3/(x-1)` `=5/((x+1)(x-1))-3/(x-1)`  
  `=5/((x+1)(x-1))-(3(x+1))/((x+1)(x-1))`  
  `=(5-3(x+1))/((x-1)(x+1))`  
  `=(2-3x)/((x-1)(x+1))`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-12-Subtraction

Algebraic Techniques, SMB-068

Factorise the expression  `5/(b^2-b)-2/(b^2-1)`  (3 marks)

Show Answers Only

`(3b+5)/(b(b-1)(b+1))`

Show Worked Solution
`5/(b^2-b)-2/(b^2-1)` `=5/(b(b-1))-2/((b+1)(b-1))`  
  `=(5(b+1))/(b(b-1)(b+1))-(2b)/(b(b-1)(b+1))`  
  `=(5b+5-2b)/(b(b-1)(b+1))`  
  `=(3b+5)/(b(b-1)(b+1))`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-12-Subtraction

Algebraic Techniques, SMB-067

Factorise the expression  `(x^2-7x+12)/(x-3)`  (2 marks)

Show Answers Only

`x-4`

Show Worked Solution
`(x^2-7x+12)/(x-3)` `=((x-3)(x-4))/(x-3)`  
  `=x-4`  

Filed Under: Algebraic Fractions Tagged With: num-title-ct-pathc, smc-4356-16-Divide

  • « Previous Page
  • 1
  • 2
  • 3
  • 4
  • 5
  • Next Page »

Copyright © 2014–2025 SmarterEd.com.au · Log in