SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Proof, EXT1 P1 2023 HSC 12b

Use mathematical induction to prove that

\((1 \times 2)+\left(2 \times 2^2\right)+\left(3 \times 2^3\right)+\cdots+\left(n \times 2^n\right)=2+(n-1) 2^{n+1}\)

for all integers \(n \geq 1\).   (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Proof (See Worked Solutions)} \)

Show Worked Solution

\(\text{Prove true for}\ \ n=1: \)

\(\text{LHS}\ = 1 \times 2=2 \)

\(\text{RHS}\ = 2+(1-1)2^2 = 2 = \text{LHS} \)
 

\(\text{Assume true for}\ \ n=k: \)

\((1 \times 2)+\left(2 \times 2^2\right)+\cdots+\left(k \times 2^k\right)=2+(k-1) 2^{k+1}\)
 

\(\text{Prove true for}\ \ n=k+1: \)

\((1 \times 2)+\left(2 \times 2^2\right)+\cdots+\left(k \times 2^k\right) + (k+1)2^{k+1}=2+k \times 2^{k+2}\)

\(\text{LHS}\) \(=2+(k-1)2^{k+1} + (k+1) 2^{k+1} \)  
  \(=2+2^{k+1}(k-1+k+1) \)  
  \(=2+2^{k+1}(2k) \)  
  \(=2+k \times 2^{k+2} \)  
  \(=\ \text{RHS} \)  
 

\(\Rightarrow\ \text{True for}\ \ n=k+1 \)

\(\therefore\ \text{Since true for}\ \ n=1, \text{by PMI, true for integers}\ \ n \geq 1. \)

Filed Under: P1 Induction (Y12) Tagged With: Band 3, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2021 HSC 12c

Use mathematical induction to prove that

`1/(1 xx 2 xx 3) + 1/(2 xx 3 xx 4) + … + 1/(n(n + 1)(n + 2)) = 1/4 - 1/(2(n + 1)(n + 2))`

 
for all integers `n ≥ 1`.  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(Prove for)\ \ n >= 1,`

`1/(1 xx 2 xx 3) + … + 1/(n(n + 1)(n + 2)) = 1/4 – 1/(2(n + 1)(n + 2))`
 

`text(If)\ \ n = 1:`

`text(LHS)\ = 1/(1 xx 2 xx 3) = 1/6`

`text(RHS)\ = 1/4 – 1/(2 xx 2 xx 3) = 1/4 – 1/12 = 1/6`

 
`:.\ text(True for)\ \ n = 1`
 

`text(Assume true for)\ \ n = k:`

`text(i.e.)\ \ 1/(1 xx 2 xx 3) + … + 1/(k(k + 1)(k + 2)) = 1/4 – 1/(2(k + 1)(k + 2))`

 
`text(Prove true for)\ \ n = k + 1:`

`text(i.e.)\ \ 1/(1 xx 2 xx 3) + … + 1/((k + 1)(k + 2)(k + 3)) = 1/4 – 1/(2(k + 2)(k + 3))`

`text(LHS)` `= 1/(1 xx 2 xx 3) + … + 1/(k(k + 1)(k + 2)) + 1/((k + 1)(k + 2)(k + 3))`
  `= 1/4 – 1/(2(k + 1)(k + 2)) + 1/((k + 1)(k + 2)(k + 3))`
  `= 1/4 – ((k + 3 – 2)/(2(k + 1)(k + 2)(k + 3)))`
  `= 1/4 – (k + 1)/(2(k + 1)(k + 2)(k + 3))`
  `= 1/4 – 1/(2(k + 2)(k + 3))`
  `=\ text(RHS)`

 
`=>\ text(True for)\ \ n = k + 1`

`:.\ text(S)text(ince true for)\ \ n = 1, \ text(by PMI, true for integral)\ \ n >= 1.`

Filed Under: P1 Induction (Y12) Tagged With: Band 4, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2020 HSC 12a

Use the principle of mathematical induction to show that for all integers  `n >= 1`,

`1 xx 2 + 2 xx 5 + 3 xx 8 + … + n(3n-1) = n^2(n + 1)`.  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(Prove)`

`1 xx 2 + 2 xx 5 + 3 xx 8 + … + n(3n-1) = n^2(n + 1)`
 

`text(Prove true for)\ \ n = 1:`

`text(LHS) = 1(3 xx 1-1) = 2`

`text(RHS) = 1^2(1 + 1) = 2`
 

`text(Assume true for)\ \ n = k:`

`text(i.e.)\ \ 1 xx 2 + 2 xx 5 + 3 xx 8 + … + k(3k-1) = k^2(k + 1)`
 

`text(Prove true for)\ \ n = k + 1:`

`text(i.e.)\ 1 xx 2 + 2 xx 5 + … + k(3k-1) + (k + 1)(3k + 2) = (k + 1)^2(k + 2)`

`text(LHS)` `= 1 xx 2 + … + k(3k-1) + (k + 1)(3k + 2)`
  `= k^2(k + 1) + (k + 1)(3k + 2)`
  `= (k + 1)(k^2 + 3k + 2)`
  `= (k + 1)(k + 1)(k + 2)`
  `= (k + 1)^2(k + 2)`
  `=\ text(RHS)`

 
`=>\ text(True for)\ n = k + 1`

`:. text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n >= 1`.

Filed Under: P1 Induction (Y12) Tagged With: Band 3, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2019 HSC 14a

Prove by mathematical induction that, for all integers `n >= 1`,

`1(1!) + 2(2!) + 3(3!) + … + n(n!) = (n + 1)! - 1`.  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ text{(See Worked Solutions)}`

Show Worked Solution

`text(Prove true for)\ n = 1:`

`text(LHS) = 1(1!) = 1`

`text(RHS) = (1 + 1)! – 1 = 2! – 1 = 1 = text(LHS)`

`:.\ text(True for)\ \ n = 1`
 

`text(Assume true for)\ \ n = k:`

`1(1!) + 2(2!) + … + k(k!) = (k + 1)! – 1`
 

`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ \ underbrace(1(1!) + 2(2!) + … + k(k!))_((k + 1)! – 1) + (k + 1)(k + 1)! = (k + 2)! – 1`

`text(LHS)` `= (k + 1)! – 1 + (k + 1)(k + 1)!`
  `= (k + 1)! [1 + (k + 1)] – 1`
  `= (k + 1)!(k + 2) – 1`
  `= (k + 2)! – 1`

 
`\Rightarrow\ \ text(True for)\ \ n = k + 1`

`:.\ text(S)text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`

Filed Under: P1 Induction (Y12) Tagged With: Band 3, smc-1019-20-Sum of a Series, smc-1019-30-Factorial

Proof, EXT1 P1 2018 HSC 13a

Prove by mathematical induction that, for  `n >= 1,`

`2-6 + 18-54 + … + 2 (-3)^(n-1) = (1-(-3)^n)/2.`  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

`text(If)\ \ n = 1,`

`text(LHS)` `= 2 (-3)^0 = 2`
`text(RHS)` `= (1-(-3)^1)/2 = 2`

`:.\ text(True for)\ n = 1`
 

`text(Assume true for)\ n = k`

`2-6 + 18-54 + … + 2 (-3)^(k-1) = (1-(-3)^k)`
 

`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ \ 2-6 + … + 2 (-3)^(k-1) + 2 (-3)^k = (1-(-3)^(k + 1))/2`

`text(LHS)` `= underbrace{2-6 + … + 2(-3)^(k-1)}_text(Sum of GP, r = –3) + 2 (-3)^k`
  `= (2(1-(-3)^k))/(1+3) + 2 (-3)^k`
  `= (1-(-3)^k + 4 (-3)^k)/2`
  `= (1 + 3(-3)^k)/2`
  `= (1-(-3)(-3)^k)/2`
  `= (1-(-3)^(k + 1))/2`
  `=\ text(RHS)`

 
`=>\ text(True for)\ \ n=k+1`

`:.\ text(S)text(ince true for)\ \ n=1, text(by PMI, true for integral)\ n >= 1.`

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 3, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2016 HSC 14a

  1. Show that  `4n^3 + 18n^2 + 23n + 9`  can be written as
  2. `qquad (n + 1)(4n^2 + 14n + 9)`.   (1 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Using the result in part (i), or otherwise, prove by mathematical induction that, for  `n >= 1`,
  4. `qquad 1 × 3 + 3 × 5 + 5 × 7 + … + (2n-1)(2n + 1) = 1/3 n(4n^2 + 6n-1)`.   (3 marks)

    --- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    `text(Proof)\ \ text{(See Worked Solutions)}`

ii.   `text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution
i.   `text(RHS)` `= (n + 1) (4n^2 + 14n + 9)`
    `= 4n^3 + 14n^2 + 9n + 4n^2 + 14n + 9`
    `= 4n^3 + 18n^2 + 23n + 9`

 

ii.   `text(Prove)\ \ 1 xx 3 + 3 xx 5 + 5 xx 7 + … + (2n-1) (2n + 1)`

`= 1/3n (4n^2 + 6n-1)`

`text(If)\ \ n = 1,`

`text(LHS) = (1) (3) = 3`

`text(RHS) = 1/3 (1) (4 + 6-1) = 3`

`:.\ text(True for)\ \ n = 1`

 

`text(Assume true for)\ \ n = k`

`text(i.e.)\ \ 1 xx 3 + 3 xx 5 + … + (2k-1) (2k + 1)`

`= 1/3 k (4k^2 + 6k-1)`

`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ \ 1 xx 3 + … + (2k + 1) (2k + 3)`

`= 1/3 (k + 1) [4 (k + 1)^2 + 6(k + 1)-1]`

`= 1/3 (k + 1) (4k^2 + 14k + 9)`

`= 1/3 (4k^3 + 18k^2 + 23k + 9)`

 

`text(LHS)` `= 1 xx 3 + … + (2k-1) (2k + 1) + (2k + 1) (2k + 3)`
  `= 1/3k (4k^2 + 6k-1) + (2k + 1) (2k + 3)`
  `= 1/3 (4k^3 + 6k^2-k) + (4k^2 + 8k + 3)`
  `= 1/3 (4k^3 + 6k^2-k + 12k^2 + 24k + 9)`
  `= 1/3 (4k^3 + 18k^2 + 23k + 9)`
  `=\ text(RHS …)`

 

`=> text(True for)\ \ n = k + 1`

`:.\ text(S) text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 3, Band 4, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2015 HSC 13c

Prove by mathematical induction that for all integers `n ≥ 1`,

`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`.  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Prove for)\ n ≥ 1`

`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`

`text(If)\ n = 1`

`text(LHS)` `= 1/(2!) = 1/2`
`text(RHS)` `= 1 − 1/(2!) = 1 − 1/2 = 1/2`

`:.\ text(True for)\ n = 1`

 
`text(Assume true for)\ n = k`

`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) = 1 − 1/((k + 1)!)`

`text(Prove true for)\ n = k + 1`

`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) + (k + 1)/((k + 2)!) = 1 − 1/((k + 2)!)`

`text(LHS)` `= 1 − 1/((k + 1)!) + (k + 1)/((k + 2)!)`
  `= 1 − (((k + 2) − (k + 1))/((k + 1)!(k + 2)))`
  `= 1 − 1/((k + 2)!)\ \ …\ text(as required)`

 
`=>\ text(True for)\ n = k + 1`

`:.\ text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n ≥ 1.`

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 3, smc-1019-20-Sum of a Series, smc-1019-30-Factorial

Proof, EXT1 P1 2008 HSC 3b

Use mathematical induction to prove that, for integers  `n >= 1`,

`1 xx 3 + 2 xx 4 + 3 xx 5 + ... + n(n+2) = n/6 (n + 1)(2n + 7)`.   (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

`text(Prove)\ \ 1 xx 3 + 2 xx 4 + 3 xx 5 + … + n(n+2)`

`= n/6 (n+1)(2n + 7)\ \ \ text(for)\ n >= 1`

`text(If)\ \ n = 1`

`text(LHS) = 1 xx 3 = 3`

`text(RHS) = 1/6 (2)(9) = 3 = text(LHS)`

`:.\ text(True for)\ \ n = 1`

 
`text(Assume true for)\ \ n = k`

`text(i.e.)\ \ 1 xx 3 + 2 xx 4 + … + k (k + 2)`

`= k/6 (k + 1)(2k + 7)`

 
`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ \ 1 xx 3 + 2 xx 4 + … + k(k+2) + (k + 1)(k + 3)`

`= ((k+1))/6 (k + 2)(2k + 9)`

`text(LHS)` `= k/6 (k + 1)(2k + 7) + (k + 1)(k + 3)`
  `= 1/6 (k + 1)[k(2k + 7) + 6(k + 3)]`
  `= 1/6 (k + 1)[2k^2 + 7k + 6k + 18]`
  `= 1/6 (k + 1)[2k^2 + 13k + 18]`
  `= 1/6 (k +1)(k + 2)(2k + 9)\ \ \ \ text(… as required)`

 
`=>\ text(True for)\ n = k + 1`

`:.\ text(S) text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n >= 1.`

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 4, smc-1019-20-Sum of a Series

Proof, EXT1 P1 2011 HSC 6a

 Use mathematical induction to prove that  for `n>=1`,

`1xx5+2xx6+3xx7+\ …\ +n(n+4)=1/6n(n+1)(2n+13)`.   (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answer Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Prove)\ \ 1xx5+2xx6+3xx7+\ …\ +n(n+4)`

`=1/6n(n+1)(2n+13)\ text(for)\ n>=1`

`text(If)\ n=1`

`text(LHS)=1xx5=5`

`text(RHS)=1/6(1)(2)(15)=30/6=5=text(LHS)`

`:.text(True for)\ \ n=1`

 
`text(Assume true for)\ n=k`

`text(i.e.)\ \ 1xx5+2xx6+3xx7+\ …\ +k(k+4)`

`=1/6k(k+1)(2k+13)`

`text(Prove true for)\ n=k+1`

`text(i.e.)\ 1xx5+2xx6+\ …\ +k(k+4)+(k+1)(k+5)`

`=1/6(k+1)(k+2)(2k+15)`

MARKER’S COMMENT: Write out the statement to be proven. Transcription errors, poor setting out and inefficient algebraic approaches (factorise whenever possible) were common errors.
`text(LHS)` `=1/6k(k+1)(2k+13)+(k+1)(k+5)`
  `=1/6(k+1)[k(2k+13)+6(k+5)]`
  `=1/6(k+1)[2k^2+13k+6k+30]`
  `=1/6k(k+1)(2k^2+19k+30)`
  `=1/6k(k+1)(k+2)(2k+15)`
  `=\ text(RHS … as required)`

 
`=>\ text(True for)\ n=k+1`

`:.\ text{S}text{ince true for}\ \ n=1,\ text{by PMI, true for integral}\  n>=1`.

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 4, smc-1019-20-Sum of a Series

Copyright © 2014–2025 SmarterEd.com.au · Log in