Use mathematical induction to prove that
\((1 \times 2)+\left(2 \times 2^2\right)+\left(3 \times 2^3\right)+\cdots+\left(n \times 2^n\right)=2+(n-1) 2^{n+1}\)
for all integers \(n \geq 1\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Use mathematical induction to prove that
\((1 \times 2)+\left(2 \times 2^2\right)+\left(3 \times 2^3\right)+\cdots+\left(n \times 2^n\right)=2+(n-1) 2^{n+1}\)
for all integers \(n \geq 1\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(\text{Proof (See Worked Solutions)} \)
\(\text{Prove true for}\ \ n=1: \)
\(\text{LHS}\ = 1 \times 2=2 \)
\(\text{RHS}\ = 2+(1-1)2^2 = 2 = \text{LHS} \)
\(\text{Assume true for}\ \ n=k: \)
\((1 \times 2)+\left(2 \times 2^2\right)+\cdots+\left(k \times 2^k\right)=2+(k-1) 2^{k+1}\)
\(\text{Prove true for}\ \ n=k+1: \)
\((1 \times 2)+\left(2 \times 2^2\right)+\cdots+\left(k \times 2^k\right) + (k+1)2^{k+1}=2+k \times 2^{k+2}\)
\(\text{LHS}\) | \(=2+(k-1)2^{k+1} + (k+1) 2^{k+1} \) | |
\(=2+2^{k+1}(k-1+k+1) \) | ||
\(=2+2^{k+1}(2k) \) | ||
\(=2+k \times 2^{k+2} \) | ||
\(=\ \text{RHS} \) |
\(\Rightarrow\ \text{True for}\ \ n=k+1 \)
\(\therefore\ \text{Since true for}\ \ n=1, \text{by PMI, true for integers}\ \ n \geq 1. \)
Use mathematical induction to prove that
`1/(1 xx 2 xx 3) + 1/(2 xx 3 xx 4) + … + 1/(n(n + 1)(n + 2)) = 1/4 - 1/(2(n + 1)(n + 2))`
for all integers `n ≥ 1`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Prove for)\ \ n >= 1,`
`1/(1 xx 2 xx 3) + … + 1/(n(n + 1)(n + 2)) = 1/4 – 1/(2(n + 1)(n + 2))`
`text(If)\ \ n = 1:`
`text(LHS)\ = 1/(1 xx 2 xx 3) = 1/6`
`text(RHS)\ = 1/4 – 1/(2 xx 2 xx 3) = 1/4 – 1/12 = 1/6`
`:.\ text(True for)\ \ n = 1`
`text(Assume true for)\ \ n = k:`
`text(i.e.)\ \ 1/(1 xx 2 xx 3) + … + 1/(k(k + 1)(k + 2)) = 1/4 – 1/(2(k + 1)(k + 2))`
`text(Prove true for)\ \ n = k + 1:`
`text(i.e.)\ \ 1/(1 xx 2 xx 3) + … + 1/((k + 1)(k + 2)(k + 3)) = 1/4 – 1/(2(k + 2)(k + 3))`
`text(LHS)` | `= 1/(1 xx 2 xx 3) + … + 1/(k(k + 1)(k + 2)) + 1/((k + 1)(k + 2)(k + 3))` |
`= 1/4 – 1/(2(k + 1)(k + 2)) + 1/((k + 1)(k + 2)(k + 3))` | |
`= 1/4 – ((k + 3 – 2)/(2(k + 1)(k + 2)(k + 3)))` | |
`= 1/4 – (k + 1)/(2(k + 1)(k + 2)(k + 3))` | |
`= 1/4 – 1/(2(k + 2)(k + 3))` | |
`=\ text(RHS)` |
`=>\ text(True for)\ \ n = k + 1`
`:.\ text(S)text(ince true for)\ \ n = 1, \ text(by PMI, true for integral)\ \ n >= 1.`
Use the principle of mathematical induction to show that for all integers `n >= 1`,
`1 xx 2 + 2 xx 5 + 3 xx 8 + … + n(3n-1) = n^2(n + 1)`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Prove)`
`1 xx 2 + 2 xx 5 + 3 xx 8 + … + n(3n-1) = n^2(n + 1)`
`text(Prove true for)\ \ n = 1:`
`text(LHS) = 1(3 xx 1-1) = 2`
`text(RHS) = 1^2(1 + 1) = 2`
`text(Assume true for)\ \ n = k:`
`text(i.e.)\ \ 1 xx 2 + 2 xx 5 + 3 xx 8 + … + k(3k-1) = k^2(k + 1)`
`text(Prove true for)\ \ n = k + 1:`
`text(i.e.)\ 1 xx 2 + 2 xx 5 + … + k(3k-1) + (k + 1)(3k + 2) = (k + 1)^2(k + 2)`
`text(LHS)` | `= 1 xx 2 + … + k(3k-1) + (k + 1)(3k + 2)` |
`= k^2(k + 1) + (k + 1)(3k + 2)` | |
`= (k + 1)(k^2 + 3k + 2)` | |
`= (k + 1)(k + 1)(k + 2)` | |
`= (k + 1)^2(k + 2)` | |
`=\ text(RHS)` |
`=>\ text(True for)\ n = k + 1`
`:. text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n >= 1`.
Prove by mathematical induction that, for all integers `n >= 1`,
`1(1!) + 2(2!) + 3(3!) + … + n(n!) = (n + 1)! - 1`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text(Proof)\ text{(See Worked Solutions)}`
`text(Prove true for)\ n = 1:`
`text(LHS) = 1(1!) = 1`
`text(RHS) = (1 + 1)! – 1 = 2! – 1 = 1 = text(LHS)`
`:.\ text(True for)\ \ n = 1`
`text(Assume true for)\ \ n = k:`
`1(1!) + 2(2!) + … + k(k!) = (k + 1)! – 1`
`text(Prove true for)\ \ n = k + 1`
`text(i.e.)\ \ underbrace(1(1!) + 2(2!) + … + k(k!))_((k + 1)! – 1) + (k + 1)(k + 1)! = (k + 2)! – 1`
`text(LHS)` | `= (k + 1)! – 1 + (k + 1)(k + 1)!` |
`= (k + 1)! [1 + (k + 1)] – 1` | |
`= (k + 1)!(k + 2) – 1` | |
`= (k + 2)! – 1` |
`\Rightarrow\ \ text(True for)\ \ n = k + 1`
`:.\ text(S)text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`
Prove by mathematical induction that, for `n >= 1,`
`2-6 + 18-54 + … + 2 (-3)^(n-1) = (1-(-3)^n)/2.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(If)\ \ n = 1,`
`text(LHS)` | `= 2 (-3)^0 = 2` |
`text(RHS)` | `= (1-(-3)^1)/2 = 2` |
`:.\ text(True for)\ n = 1`
`text(Assume true for)\ n = k`
`2-6 + 18-54 + … + 2 (-3)^(k-1) = (1-(-3)^k)`
`text(Prove true for)\ \ n = k + 1`
`text(i.e.)\ \ 2-6 + … + 2 (-3)^(k-1) + 2 (-3)^k = (1-(-3)^(k + 1))/2`
`text(LHS)` | `= underbrace{2-6 + … + 2(-3)^(k-1)}_text(Sum of GP, r = –3) + 2 (-3)^k` |
`= (2(1-(-3)^k))/(1+3) + 2 (-3)^k` | |
`= (1-(-3)^k + 4 (-3)^k)/2` | |
`= (1 + 3(-3)^k)/2` | |
`= (1-(-3)(-3)^k)/2` | |
`= (1-(-3)^(k + 1))/2` | |
`=\ text(RHS)` |
`=>\ text(True for)\ \ n=k+1`
`:.\ text(S)text(ince true for)\ \ n=1, text(by PMI, true for integral)\ n >= 1.`
`qquad (n + 1)(4n^2 + 14n + 9)`. (1 marks)
--- 2 WORK AREA LINES (style=lined) ---
`qquad 1 × 3 + 3 × 5 + 5 × 7 + … + (2n - 1)(2n + 1) = 1/3 n(4n^2 + 6n - 1)`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
i. | `text(RHS)` | `= (n + 1) (4n^2 + 14n + 9)` |
`= 4n^3 + 14n^2 + 9n + 4n^2 + 14n + 9` | ||
`= 4n^3 + 18n^2 + 23n + 9` |
ii. `text(Prove)\ \ 1 xx 3 + 3 xx 5 + 5 xx 7 + … + (2n – 1) (2n + 1)`
`= 1/3n (4n^2 + 6n – 1)`
`text(If)\ \ n = 1,`
`text(LHS) = (1) (3) = 3`
`text(RHS) = 1/3 (1) (4 + 6 – 1) = 3`
`:.\ text(True for)\ \ n = 1`
`text(Assume true for)\ \ n = k`
`text(i.e.)\ \ 1 xx 3 + 3 xx 5 + … + (2k – 1) (2k + 1)`
`= 1/3 k (4k^2 + 6k – 1)`
`text(Prove true for)\ \ n = k + 1`
`text(i.e.)\ \ 1 xx 3 + … + (2k + 1) (2k + 3)`
`= 1/3 (k + 1) [4 (k + 1)^2 + 6(k + 1) – 1]`
`= 1/3 (k + 1) (4k^2 + 14k + 9)`
`= 1/3 (4k^3 + 18k^2 + 23k + 9)`
`text(LHS)` | `= 1 xx 3 + … + (2k – 1) (2k + 1) + (2k + 1) (2k + 3)` |
`= 1/3k (4k^2 + 6k – 1) + (2k + 1) (2k + 3)` | |
`= 1/3 (4k^3 + 6k^2 – k) + (4k^2 + 8k + 3)` | |
`= 1/3 (4k^3 + 6k^2 – k + 12k^2 + 24k + 9)` | |
`= 1/3 (4k^3 + 18k^2 + 23k + 9)` | |
`=\ text(RHS …)` |
`=> text(True for)\ \ n = k + 1`
`:.\ text(S) text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`
Prove by mathematical induction that for all integers `n ≥ 1`,
`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Prove for)\ n ≥ 1`
`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`
`text(If)\ n = 1`
`text(LHS)` | `= 1/(2!) = 1/2` |
`text(RHS)` | `= 1 − 1/(2!) = 1 − 1/2 = 1/2` |
`:.\ text(True for)\ n = 1`
`text(Assume true for)\ n = k`
`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) = 1 − 1/((k + 1)!)`
`text(Prove true for)\ n = k + 1`
`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) + (k + 1)/((k + 2)!) = 1 − 1/((k + 2)!)`
`text(LHS)` | `= 1 − 1/((k + 1)!) + (k + 1)/((k + 2)!)` |
`= 1 − (((k + 2) − (k + 1))/((k + 1)!(k + 2)))` | |
`= 1 − 1/((k + 2)!)\ \ …\ text(as required)` |
`=>\ text(True for)\ n = k + 1`
`:.\ text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n ≥ 1.`
Use mathematical induction to prove that, for integers `n >= 1`,
`1 xx 3 + 2 xx 4 + 3 xx 5 + ... + n(n+2) = n/6 (n + 1)(2n + 7)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Prove)\ \ 1 xx 3 + 2 xx 4 + 3 xx 5 + … + n(n+2)`
`= n/6 (n+1)(2n + 7)\ \ \ text(for)\ n >= 1`
`text(If)\ \ n = 1`
`text(LHS) = 1 xx 3 = 3`
`text(RHS) = 1/6 (2)(9) = 3 = text(LHS)`
`:.\ text(True for)\ \ n = 1`
`text(Assume true for)\ \ n = k`
`text(i.e.)\ \ 1 xx 3 + 2 xx 4 + … + k (k + 2)`
`= k/6 (k + 1)(2k + 7)`
`text(Prove true for)\ \ n = k + 1`
`text(i.e.)\ \ 1 xx 3 + 2 xx 4 + … + k(k+2) + (k + 1)(k + 3)`
`= ((k+1))/6 (k + 2)(2k + 9)`
`text(LHS)` | `= k/6 (k + 1)(2k + 7) + (k + 1)(k + 3)` |
`= 1/6 (k + 1)[k(2k + 7) + 6(k + 3)]` | |
`= 1/6 (k + 1)[2k^2 + 7k + 6k + 18]` | |
`= 1/6 (k + 1)[2k^2 + 13k + 18]` | |
`= 1/6 (k +1)(k + 2)(2k + 9)\ \ \ \ text(… as required)` |
`=>\ text(True for)\ n = k + 1`
`:.\ text(S) text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n >= 1.`
Use mathematical induction to prove that for `n>=1`,
`1xx5+2xx6+3xx7+\ …\ +n(n+4)=1/6n(n+1)(2n+13)`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Prove)\ \ 1xx5+2xx6+3xx7+\ …\ +n(n+4)`
`=1/6n(n+1)(2n+13)\ text(for)\ n>=1`
`text(If)\ n=1`
`text(LHS)=1xx5=5`
`text(RHS)=1/6(1)(2)(15)=30/6=5=text(LHS)`
`:.text(True for)\ \ n=1`
`text(Assume true for)\ n=k`
`text(i.e.)\ \ 1xx5+2xx6+3xx7+\ …\ +k(k+4)`
`=1/6k(k+1)(2k+13)`
`text(Prove true for)\ n=k+1`
`text(i.e.)\ 1xx5+2xx6+\ …\ +k(k+4)+(k+1)(k+5)`
`=1/6(k+1)(k+2)(2k+15)`
`text(LHS)` | `=1/6k(k+1)(2k+13)+(k+1)(k+5)` |
`=1/6(k+1)[k(2k+13)+6(k+5)]` | |
`=1/6(k+1)[2k^2+13k+6k+30]` | |
`=1/6k(k+1)(2k^2+19k+30)` | |
`=1/6k(k+1)(k+2)(2k+15)` | |
`=\ text(RHS … as required)` |
`=>\ text(True for)\ n=k+1`
`:.\ text{S}text{ince true for}\ \ n=1,\ text{by PMI, true for integral}\ n>=1`.