Sketch the graph of \(y=\dfrac{1}{3} \cos ^{-1}(2 x)\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Sketch the graph of \(y=\dfrac{1}{3} \cos ^{-1}(2 x)\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
What are the domain and range of the function \(y = 2 \cos^{-1}(2x) + 2 \sin^{-1}(2x)\)?
\(A\)
\(\text{Domain:}\ \ -1 \leqslant 2x \leqslant 1 \ \ \Rightarrow\ \ -\dfrac{1}{2} \leqslant x \leqslant \dfrac{1}{2} \)
\(\text{Range:}\ \ 2\Big(\cos^{-1}(2x)+ \sin^{-1}(2x)\Big) = 2 \times \dfrac{\pi}{2} = \pi\)
\(\Rightarrow A\)
Sketch the graph \(y=2 \cos ^{-1}(x+1)\). (3 marks) --- 10 WORK AREA LINES (style=lined) ---
Sketch `y=3cos^(-1)(2x-1)` (3 marks)
`text{Domain:}`
| `-1` | `<=(2x-1)<=1` | |
| `0` | `<=2x<=2` | |
| `0` | `<=x<=1` |
`text{Range of}\ \ cos^(-1)(x)=[0,pi]`
`=>\ text{Range of}\ \ 3cos^(-1)(x)=[0,3pi]`
`text{At}\ \ x=0,\ \ y=3cos^(-1)(-1)=3pi`
`text{Sketch}\ \ y=3cos^(-1)(2x-1):`
The graph of the function `y = arccos(x-3)` is transformed by being dilated horizontally with a scale factor of `1/2` and then translated to the left by 1.
What is the equation of the transformed graph?
`C`
`y = cos^(-1)(x-3)`
`text(Dilate horizontally with scale factor)\ 1/2`
`text(Swap:)\ \ x -> 2x`
`y_1 = cos^(-1)(2x-3)`
`text(Translate to the left by 1)`
`text(Swap:)\ \ x -> x + 1`
| `y_2` | `= cos^(-1)(2 (x + 1)-3)` |
| `= cos^(-1)(2x + 2-3)` | |
| `= cos^(-1)(2x-1)` |
`=>C`
Let `f(x) = 2 cos^(-1)x`.
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---