SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, EXT1 F1 2024 HSC 11b

Solve  \(x^2-8 x-9 \leq 0\).   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

\(-1 \leqslant x \leqslant 9\)

Show Worked Solution

    \(x^2-8 x-9 \leqslant 0\)
    \((x-9)(x+1) \leqslant 0\)

 

\(\therefore -1 \leqslant x \leqslant 9\)

Filed Under: Inequalities (Ext1) Tagged With: Band 3, smc-1033-30-Quadratics

Functions, EXT1 F1 SM-Bank 17

Solve the inequality  `x^2<=|\ 2x-1\ |`  for `x`.

Express your answer in interval notation.  (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`:. x in [-1-sqrt2, -1 + sqrt2]\ \ ∪\ \ x in [1]`

Show Worked Solution

`text(Case 1:)`

`x^2` `<=2x-1`
`x^2-2x+1` `<=0`
`(x-1)^2` `<=0`

 
`x=1`
 

`text(Case 2:)`

`x^2` `<=-(2x-1)`
`x^2+2x-1` `<=0`

 

`x` `=(-2+-sqrt(4+4*1*1))/2`  
  `=-1+-sqrt2`  

 
`text(Test)\ \ x=0\ \ =>\ \ 0<=-(-1)\ \ text{(correct)}`

`:. x in [-1-sqrt2, -1 + sqrt2]\ \ ∪\ \ x in [1]`

Filed Under: Inequalities (Ext1) Tagged With: Band 4, smc-1033-30-Quadratics, smc-1033-50-Interval notation

Functions, EXT1 F1 2020 HSC 1 MC

Which diagram best represents the solution set of  `x^2 - 2x - 3 >= 0`?
 

A. B.
C. D.
Show Answers Only

`A`

Show Worked Solution
`x^2 – 2x -3` `>=0`  
`(x-3)(x+1)` `>=0`  

 
`x>=3, \ text(or)\ \ x<=-1`

`=>A`

Filed Under: Inequalities (Ext1) Tagged With: Band 3, smc-1033-30-Quadratics

Functions, EXT1 F1 SM-Bank 1

Find the values of `x` that satisfy the equation

  `x^2 + 8x + 3 <= 0`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`{x:\  -4-sqrt{13} <=x <= -4 + sqrt{13}}`

Show Worked Solution
`x` `= (-8 ± sqrt(8^2-4 · 1 · 3))/2`
  `= (-8 ± sqrt(52))/2`
  `= -4 ± sqrt13`

 


 

`{x:\  -4-sqrt13 <=x <= -4 + sqrt13}`

Filed Under: Inequalities (Ext1) Tagged With: Band 3, smc-1033-30-Quadratics

Functions, EXT1* F1 2010 HSC 2b

Solve the inequality  `x^2 − x − 12 < 0`.   (2 marks) 

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

 `-3 < x < 4`

Show Worked Solution
 MARKER’S COMMENT: Drawing the parabola proved the most efficient way of answering this question for students.

`x^2\ – x\ – 12<0`

`text(Solve)\ \ \ ` `x^2\ – x\ – 12` `=0`
  `(x\ – 4)(x + 3)` `=0`
`=>x = 4\ text(or)\ -3`

 

 

`x^2 – x – 12 < 0`

`text(when)\ \ -3 < x < 4`

Filed Under: Inequalities (Ext1), Inequalities and Absolute Values, The Parabola Tagged With: Band 3, smc-1033-30-Quadratics

Copyright © 2014–2025 SmarterEd.com.au · Log in