SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, EXT1 F1 EQ-Bank 3 MC

A curve has the equation  \(\dfrac{(y-2)^2}{9}-\dfrac{(x+1)^2}{4}=1\).

Which of the following expresses the curve in parametric form?

  1. \(x=2 \sec \theta-1, \ y=3 \tan \theta+2\)
  2. \(x=2 \sin \theta-1, \ y=3 \cos \theta+2\)
  3. \(x=2 \tan \theta-1, \ y=3 \sec \theta+2\)
  4. \(x=4 \sec \theta-1, \ y=3 \tan \theta+2\)
Show Answers Only

\(\Rightarrow C\)

Show Worked Solution

\(\text{Curve is an ellipse} \ \ \Rightarrow \ \ \text {Eliminate B}\)

\(\text{Trig identity:}\)

\(\sin ^2 \theta+\cos ^2 \theta=1 \ \Rightarrow \ \tan ^2 \theta+1=\sec ^2 \theta \ \ \text{(Divide by \(\cos ^2 \theta\))} \)
 

\(\text{Consider option A:}\)

\(x=2 \sec \theta-1 \ \Rightarrow \ \sec \theta=\dfrac{x+1}{2}\)

\(y=3 \tan \theta+2 \ \Rightarrow \ \tan \theta=\dfrac{y-2}{3}\)

\(\dfrac{(y-2)^2}{9}+1=\dfrac{(x+1)^2}{4} \quad\)X

 
\(\text{Consider option C:}\)

\(x=2 \tan \theta-1 \ \Rightarrow \ \tan \theta=\dfrac{x+1}{2}\)

\(y=3 \sec \theta+2 \ \Rightarrow \ \sec \theta=\dfrac{y-2}{3}\)

\(\dfrac{(x+1)^2}{4}+1=\dfrac{(y-2)^2}{9} \quad \large{\checkmark}\)

\(\Rightarrow C\)

Filed Under: Parametric Functions (Ext1) Tagged With: Band 4, smc-1035-30-Linear and Other, smc-1035-40-Cartesian to Parametric

Functions, EXT1 F1 SM-Bank 8

A circle has the equation  `x^2 - 10x + y^2 + 6y +25 = 0`

  1.  Express the circle in parametric form.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Sketch the circle.  (1 mark)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = 5 + 3costheta`
    `y = −3 + 3sintheta`
  2.   
Show Worked Solution
i.    `x^2 – 10x + y^2 + 6y+25` `= 0`
  `(x – 5)^2 + (y + 3)^2 – 9` `= 0`
  `(x – 5)^2 + (y + 3)^2` `= 9`

 
`=>\ text{Circle centre (5, −3),  radius 3}`
 

`:.\ text(Parametric form is:)`

`x = 5 + 3costheta`

`y = −3 + 3sintheta`

 

ii.  

Filed Under: Parametric Functions (Ext1) Tagged With: Band 3, smc-1035-20-Circles, smc-1035-40-Cartesian to Parametric

Copyright © 2014–2025 SmarterEd.com.au · Log in