Using the substitution \(u=e^x+2 e^{-x}\), and considering \(u^2\), find \(\displaystyle \int \frac{e^{3 x}-2 e^x}{4+8 e^{2 x}+e^{4 x}}\, d x\). (3 marks) --- 8 WORK AREA LINES (style=lined) ---
Calculus, EXT1 C2 2015 HSC 11e
Use the substitution `u = 2x - 1` to evaluate `int_1^2 x/((2x - 1)^2)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Calculus, EXT1 C2 2008 HSC 2a
Use the substitution `u = log_e x` to evaluate `int_e^(e^2) 1/(x (log_e x)^2)\ dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Calculus, EXT1 C2 2009 HSC 1f
Using the substitution `u = x^3 + 1`, or otherwise, evaluate `int_0^2 x^2 e^(x^3 + 1)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Calculus, EXT1 C2 2013 HSC 11f
Use the substitution `u = e^(3x)` to evaluate `int_0^(1/3) (e^(3x))/(e^(6x) + 1)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Calculus, EXT1 C2 2011 HSC 1d
Using the substitution `u = sqrtx`, evaluate `int_1^4 (e^(sqrtx))/(sqrtx)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---