Use the substitution `u = cos^2 x` to evaluate `int_0^(pi/4) (sin 2x)/(4 + cos^2 x)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Use the substitution `u = cos^2 x` to evaluate `int_0^(pi/4) (sin 2x)/(4 + cos^2 x)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`ln {:10/9`
`u` | `= cos^2 x` |
`(du)/(dx)` | `= -2 sin x cos x` |
`= -sin 2x` | |
`du` | `= -sin 2x\ dx` |
`text(When)\ \ x = pi/4,\ \ u = 1/2`
`text(When)\ \ x = 0,\ \ u = 1`
`:. int_0^(pi/4) (sin 2x)/(4 + cos^2 x)\ dx` | `= -int_1^(1/2) (du)/(4 + u)` |
`= -[ln (4 + u)]_1^(1/2)` | |
`= -(ln 4.5 – ln 5)` | |
`= -ln {:9/10` | |
`= ln {:10/9` |
Evaluate `int_-3^0 x/sqrt(1 - x) dx`, using the substitution `u = 1 - x`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`- 8/3`
`u` | `= 1 – x\ \ => x=1-u` |
`(du)/dx` | `= -1` |
`dx` | `= -du` |
`text(When)\ \ x=0, \ u=1`
`text(When)\ \ x=-3, \ u=4`
`int_-3^0 x/sqrt (1- x)\ dx`
`= -int_4^1 (1 – u)/sqrt(u)\ du` | |
`= – int_4^1 u^(- 1/2) – u^(1/2)\ du` | |
`= – [2 u^(1/2) – 2/3 u^(3/2)]_4^1` | |
`= -[(2-2/3) – (2 sqrt 4 – 2/3 (sqrt 4)^3)` | |
`= -[4/3 – (4-16/3)]` | |
`= -8/3` |
Use the substitution `u = 25 - x^2` to evaluate `int_3^4 (2x)/(sqrt(25 - x^2))\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2`
`u` | `= 25 − x^2` |
`(du)/(dx)` | `= -2 x` |
`du` | `= -2x\ dx` |
`text(If)` | `x = 4,` | `u = 9` |
`x = 3,` | `u = 16` |
`:. int_3^4 (2x)/(sqrt(25 − x^2))\ dx`
`= − int_16^9 u^(−1/2) du`
`= − [1/(1/2) u^(1/2)]_16^9`
`= − [2sqrtu]_16^9`
`= − [2sqrt9 − 2sqrt16]`
`= − [6 − 8]`
`= 2`
Use the substitution `u = 1 - x` to evaluate `int_0^1 x sqrt(1 - x)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`4/15`
`u = 1 – x` | `\ \ \ \ \ => x = 1 – u` |
`(du)/(dx) = -1` | `\ \ \ \ \ => du = – dx` |
`text(When)\ \ \ \ ` | `x = 1,\ \ ` | `u = 0` |
`x = 0,\ \ ` | `u = 1` |
`:. int_0^1 x sqrt(1 – x)\ dx`
`= – int_1^0 (1 – u) u^(1/2)\ du`
`= int_1^0 (u – 1) u^(1/2)\ du`
`= int_1^0 (u^(3/2) – u^(1/2))\ du`
`= [2/5 u^(5/2) – 2/3 u^(3/2)]_1^0`
`= [0 – (2/5 – 2/3)]`
`= – (6/15 – 10/15)`
`= 4/15`
Use the substitution `u = 2 - x` to evaluate `int_1^2 x (2 - x)^5\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`4/21`
`u` | `=2-x` |
`:. x` | `= 2 – u` |
`(du)/dx` | `= -1` |
`:.dx` | `=-du` |
`text(When)\ \ x = 2,` | `\ \ u = 0` |
`text(When)\ \ x = 1,` | `\ \ u = 1` |
`:. int_1^2 x (2 – x)^5\ dx` | `= int_1^0 – (2 – u) u^5\ du` |
`= int_1^0 u^6 – 2u^5\ du` | |
`= [1/7 u^7 – 2/6 u^6]_1^0` | |
`= [0 – (1/7 – 1/3)]` | |
`= – (3/21 – 7/21)` | |
`= 4/21` |