SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C2 EQ-Bank 1

Given  \(y=\dfrac{\cos 2 x}{x^2}\),  find the gradient of the tangent of its inverse function at  \(\left(\dfrac{8 \sqrt{2}}{\pi^2}, \dfrac{\pi}{4}\right)\).   (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

\(-\dfrac{\pi^2}{32}\)

Show Worked Solution

\(y=\dfrac{\cos2x}{x^2}\)

\(\text{Inverse: Swap} \ \ x \leftrightarrow y\)

\(x=\dfrac{\cos 2 y}{y^2}\)

\(u=\cos 2 y \ \ \quad \quad \quad v=y^2\)

\(v^{\prime}=-2 \sin 2 y \ \ \quad v^{\prime}=2 y\)

\(\dfrac{dx}{dy}=\dfrac{-2 y^2 \sin 2 y-2 y\, \cos 2 y}{y^4}\)

\(\dfrac{dy}{dx}=\dfrac{y^4}{-2 y^2 \sin 2 y-2 y\, \cos 2 y}\)
 

\(\text{At}\ \ y=\dfrac{\pi}{4}:\)

\(\dfrac{d y}{d x}\) \(=\dfrac{\left(\dfrac{\pi}{4}\right)^4}{-2\left(\dfrac{\pi}{4}\right)^2 \sin \left(\dfrac{\pi}{2}\right)-2\left(\dfrac{\pi}{4}\right) \cos \left(\dfrac{\pi}{2}\right)}\)
  \(=-\dfrac{\pi^4}{256} \times \dfrac{8}{\pi^2}\)
  \(=-\dfrac{\pi^2}{32}\)

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 5, smc-1037-10-Sin/Cos Differentiation, smc-1037-60-Tangents

Calculus, EXT1 C2 2022 HSC 12c

Find the equation of the tangent to the curve  `y=x  text{arctan}(x)`  at the point with coordinates `(1,(pi)/(4))`. Give your answer in the form  `y=mx+c`  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y=((2+pi)/4)x-1/2`

Show Worked Solution
`y` `=xtan^(-1)(x)`  
`dy/dx` `=x xx 1/(1+x^2)+tan^(-1)(x)`  

 
`text{When}\ \ x=1:`

`dy/dx=1/2+tan^(-1)(1)=1/2+pi/4=(2+pi)/4`
 

`text{Equation of tangent}\ \ m=(2+pi)/4,\ text{through}\ \ (1,(pi)/(4)):`

`y-pi/4` `=(2+pi)/4 (x-1)`  
`y` `=((2+pi)/4)x-(2+pi)/4+pi/4`  
`y` `=((2+pi)/4)x-1/2`  

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 4, smc-1037-20-Tan Differentiation, smc-1037-60-Tangents

Copyright © 2014–2025 SmarterEd.com.au · Log in