SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C3 2022 SPEC1 10

Let `f(x)=\sec (4 x)`.

  1. Sketch the graph of `f` for `x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]` on the set of axes below. Label any asymptotes with their equations and label any turning points and the endpoints with their coordinates.   (3 marks)
      

      
  2. The graph of  `y=f(x)` for `x \in\left[-\frac{\pi}{24}, \frac{\pi}{48}\right]` is rotated about the `x`-axis to form a solid of revolution.
    Find the volume of this solid. Give your answer in the form `\frac{(a-\sqrt{b}) \pi}{c}`, where `a`, `b`, `c in R`.   (3 marks)
Show Answers Only

a.  
       

b.   `\frac{(3-\sqrt{3}) \pi}{6}`

Show Worked Solution

a.      
       


♦ Mean mark (a) 49%.
b.    `V` `=\pi \int_{-\frac{\pi}{24}}^{\frac{\pi}{48}} \sec ^2(4 x)\ dx`
    `=\frac{\pi}{4}[\tan (4 x)]_{-\frac{\pi}{24}}^{\frac{\pi}{48}}`
    `=\frac{\pi}{4} \tan \left(\frac{\pi}{12}\right)-\frac{\pi}{4} \tan \left(-\frac{\pi}{6}\right)`
    `=\frac{\pi}{4} \tan \left(\frac{\pi}{3}-\frac{\pi}{4}\right)-\frac{\pi}{4} \xx -\frac{1}{\sqrt{3}}`
    `=\frac{\pi}{4} \left(\frac{sqrt3-1}{1+sqrt3} xx \frac{1-sqrt3}{1-sqrt3}\right)+\frac{\pi}{4sqrt3}`
    `=\frac{\pi}{4} \left(\frac{sqrt3-3-1+sqrt3}{-2}\right)+\frac{\pi}{4sqrt3}`
    `=\frac{\pi}{4}(2-\sqrt{3}) +\frac{\pi}{4sqrt3}`
    `=\frac{\pi(2 \sqrt{3}-3+1)}{4 \sqrt{3}}`
    `=\frac{(6-2 \sqrt{3}) \pi}{12}`
    `=\frac{(3-\sqrt{3}) \pi}{6}`

♦ Mean mark (b) 55%.

Filed Under: Further Area and Solids of Revolution (Ext1) Tagged With: Band 5, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2022 HSC 13b

A solid of revolution is to be found by rotating the region bounded by the `x`-axis and the curve  `y=(k+1) \sin (k x)`, where  `k>0`, between  `x=0`  and  `x=\frac{\pi}{2 k}`  about the `x`-axis.
 

     

Find the value of `k` for which the volume is `pi^2`.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`k=1`

Show Worked Solution

`y=(k+1) \sin (k x)`

`V` `=pi int_0^((pi)/(2k)) (k+1)^2sin^(2)(kx)\ dx`  
  `=pi(k+1)^2 int_0^((pi)/(2k)) 1/2[1-cos(2kx)]\ dx`  
  `=(pi/2)(k+1)^2[x-(sin(2kx))/(2k)]_0^((pi)/(2k)) `  
  `=(pi/2)(k+1)^2[(pi/(2k)- sin(pi)/(2k))-(0-sin0/(2k))]`  
  `=(pi/2)(k+1)^2(pi/(2k))`  
  `=pi^2/(4k)(k+1)^2`  

 
`text{Given}\ \ V=pi^2:`

`pi^2/(4k)(k+1)^2` `=pi^2`  
`(k+1)^2` `=4k`  
`k^2+2k+1` `=4k`  
`k^2-2k+1` `=0`  
`(k-1)^2` `=0`  

 
`:.k=1`

Filed Under: Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2021 SPEC1 4

The shaded region in the diagram below is bounded by the graph of  `y = sin(x)`  and the `x`-axis between the first two non-negative `x`-intercepts of the curve, that is interval  `[0, pi]`.  The shaded region is rotated about the `x`-axis to form a solid of revolution.
 
       
 
Find the volume, `V_s` of the solid formed.  (3 marks)

Show Answers Only

`(pi^2)/2\ text(u)³`

Show Worked Solution
  `V_s` `= pi int_0^pi sin^2(x)\ dx`
    `= pi int_0^pi 1/2(1 – cos(2x))\ dx`
    `= pi/2 int_0^pi 1 – cos(2x)\ dx`
    `= pi/2 [x – 1/2 sin(2x)]_0^pi`
    `= pi/2[pi – 1/2 sin(2pi) – (0 – 1/2 sin 0)]`
    `= (pi^2)/2\ text(u)³`

Filed Under: Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2020 HSC 13b

The region `R` is bounded by the `y`-axis, the graph of  `y = cos(2x)`  and the graph of  `y = sin x`, as shown in the diagram.
 

Find the volume of the solid of revolution formed when the region `R` is rotated about the `x`-axis.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`(3sqrt3 pi)/16\ text(u)³`

Show Worked Solution

`text(Find intersection:)`

Mean mark 53%.

`sin x = cos 2x`

`sin x = 1 – 2sin^2 x`

`2sin^2 x + sinx – 1` `= 0`
`(2 sinx – 1)(sinx + 1)` `= 0`
`sin x` `= 1/2` `text(or)` `sin x` `= −1`
`x` `= pi/6`   `x` `= (3pi)/2`

 

`V` `= pi int_0^(pi/6) (cos 2x)^2\ dx – pi int_0^(pi/6)(sin x)^2\ dx`
  `= pi int_0^(pi/6) cos^2 2x – sin^2 x\ dx`
  `= pi int_0^(pi/6) 1/2 (1 + cos 4x) – 1/2 (1 – cos 2x)\ dx`
  `= pi/2 int_0^(pi/6) cos 4x + cos 2x\ dx`
  `= pi/2 [1/4 sin 4x + 1/2 sin 2x]_0^(pi/6)`
  `= pi/8 [sin\ (2pi)/3 + 2sin\ pi/3]`
  `= pi/8 (sqrt3/2 + 2 xx sqrt3/2)`
  `= (3sqrt3 pi)/16\ text(u)³`

Filed Under: Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1* C3 2004 HSC 4c

2004 4c

In the diagram, the shaded region is bounded by the curve  `y = 2 sec x`, the coordinate axes and the line  `x = pi/3`. The shaded region is rotated about the `x`-axis.

Calculate the exact volume of the solid of revolution formed.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`4sqrt3\ pi\ \ text(u³)`

Show Worked Solution
`y` `= 2 sec x`
`:. y^2` `= 4 sec^2 x`

 

`V` `= pi int_0^(pi/3) y^2\ dx`
  `= pi int_0^(pi/3) 4 sec^2 x\ dx`
  `= 4pi int_0^(pi/3) sec^2 x\ dx`
  `= 4pi[tan x]_0^(pi/3)`
  `= 4pi(tan\ pi/3 − tan 0)`
  `= 4pi(sqrt3 − 0)`
  `= 4sqrt3\ pi\ \ text(u³)`

Filed Under: Further Area and Solids of Revolution (Ext1), Volumes of Solids of Rotation Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2005 HSC 5a

Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve  `y = sin 2x`, the `x`-axis and the line  `x = pi/8`  is rotated about the `x`-axis.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`pi/16 (pi – 2)\ \ \ text(u³)`

Show Worked Solution
`y` `= sin 2x`
`y^2` `= sin^2 2x` 

 
`text(Using:)\ \ sin^2 x= 1/2 (1 – cos 2x)`

COMMENT: Michael Wells (1st in state Ext2) would derive this formula in his working from the `sin^2x+cos^2=1` identity in ~5 seconds every time he used it in an exam.
  

`:. V` `=pi int_0^(pi/8) y^2 \ dx`
  `= pi int_0^(pi/8) sin^2 2x \ dx`
  `= pi/2 int_0^(pi/8) 1 – cos\ 4x\ dx`
  `= pi/2 [x – 1/4 sin\ 4x]_0^(pi/8)`
  `= pi/2 [(pi/8 – 1/4 sin\ pi/2) – 0]`
  `= pi/2 (pi/8 – 1/4)`
  `= pi/2 ((pi – 2)/8)`
  `= pi/16 (pi – 2)\ \ \ text(u³)`

Filed Under: 11. Integration EXT1, Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2014 HSC 12b

The region bounded by  `y = cos 4x`  and the  `x`-axis, between  `x = 0`  and  `x = pi/8`, is rotated about the  `x`-axis to form a solid.   
 

2014 12b
 

Find the volume of the solid.   (3 marks)

Show Answers Only

`(pi^2)/16\ \ text(u³)`

Show Worked Solution
COMMENT: The identities `cos 2theta=` `cos^2 theta-sin^2 theta =` ` 2cos^2 theta-1=1-2sin^2 theta`  are tested every year – know them. 
`V` `= pi int_0^(pi/8) y^2\ dx`
  `= pi int_0^(pi/8) cos^2 4x\ dx`
  `= pi int_0^(pi/8) 1/2 (cos 8x + 1)\ dx`
  `= pi/2 [1/8 sin 8x + x]_0^(pi/8)`
  `= pi/2 [(1/8 sin pi + pi/8)] – 0]`
  `= (pi^2)/16\ \ text(u³)`

Filed Under: 11. Integration EXT1, Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1 C3 2013 HSC 12b

The region bounded by the graph  `y = 3 sin\ x/2`  and the  `x`-axis between  `x = 0`  and  `x = (3pi)/2`  is rotated about the  `x`-axis to form a solid.  
 

2013 12b
 

Find the exact volume of the solid.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(9pi)/2 ((3pi)/2 + 1) text(u³)`

Show Worked Solution
`y` `= 3 sin\ x/2`
`y^2` `= 9 sin^2\ x/2`

 
`text(Using:)\ \ sin^2x= 1/2 (1 – cos 2x)`
 

`:. V` `= pi int_0^((3pi)/2) 9 sin^2\ x/2\ dx`
  `= (9pi)/2 int_0^((3pi)/2) (1\ – cosx)\ dx`
  `= (9pi)/2 [x\ – sinx]_0^((3pi)/2)`
  `= (9pi)/2 [((3pi)/2\ – sin\ (3pi)/2)\ – 0]`
  `= (9pi)/2 ((3pi)/2 + 1)\ text(u³)`

Filed Under: 11. Integration EXT1, Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Calculus, EXT1* C3 2009 HSC 6a

The diagram shows the region bounded by the curve  `y = sec x`, the lines  `x = pi/3`  and  `x = -pi/3`,  and the  `x`-axis. 
 

2009 6a
 

The region is rotated about the   `x`-axis. Find the volume of the solid of revolution formed.   (3 marks)

Show Answers Only

 `2 sqrt 3 pi\ text(u³)`

Show Worked Solution
`V` `= pi int_(-pi/3)^(pi/3) y^2\ dx`
  `= pi int_(-pi/3)^(pi/3) sec^2x\ dx`
  `= pi [tanx]_(-pi/3)^(pi/3)`
  `= pi[tan(pi/3) – tan(-pi/3)]`
  `= pi [sqrt3\ – (-sqrt3)]`
  `= 2 sqrt3 pi\ text(u³)`

Filed Under: Further Area and Solids of Revolution (Ext1), Volumes of Solids of Rotation Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Copyright © 2014–2025 SmarterEd.com.au · Log in