Which of the following is equal to \((a+i b)^3\)?
- \( (a^3-3 a b^2)+i (3 a^2 b+b^3) \)
- \( (a^3+3 a b^2)+i (3 a^2 b+b^3) \)
- \( (a^3-3 a b^2)+i (3 a^2 b-b^3) \)
- \( (a^3+3 a b^2)+i(3 a^2 b-b^3)\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Which of the following is equal to \((a+i b)^3\)?
\(C\)
\((a+i b)^3\) | \(=a^3+3a^2ib+3a(ib)^2+(ib)^3\) | |
\(=a^3+3a^2ib-3ab^2-ib^3\) | ||
\(=(a^3-3ab^2)+i(3a^2b-b^3) \) |
\(\Rightarrow C\)
Find `overset5 underset{n=1}∑ (i)^n`. (2 marks)
`i`
`overset5 underset{n=1}∑ (i)^n` | `= i + i^2 + i^3 + i^4 + i^5` |
`= i – 1 – i + 1 + i` | |
`= i` |
Given that `(x + iy)^14 = a + ib`, where `x, y, a, b ∈ R, \ (y - ix)^14` for all values of `x` and `y` is equal to
`A`
`(y – ix)^14` | `= (−i(x + iy))^14` |
`= −i^14(x + iy)^14` | |
`= −(x + iy)^14` | |
`= −a – ib` |
`=>A`
Calculate `i^(1!) + i^(2!) + i^(3!) + …+ i^(100!)`
giving your answer in the form `x+iy` (3 marks)
`95+i`
`i^(1!) =i^1 = i`
`i^(2!) =i^2= −1`
`i^(3!) = i^6=-1`
`i^(4!) = i^24 = 1`
`i^(5!) = i^(24 xx 5)= 1^5 = 1`
`=> i^(n!) = 1\ \ text(for)\ \ n >= 4`
`:.\ text(Sum)` | `= i – 1 – 1 + 97` |
`= 95 + i` |
Let `z` be a complex number such that `z^2 = -i bar z`.
Which of the following is a possible value for `z`?
`C`
`text(Solution 1)`
`text(Consider)\ C:`
`z` | `=sqrt3/2 – 1/2 i` | |
`barz` | `=sqrt3/2 + 1/2 i` | |
`-i barz` | `=1/2-sqrt3/2 i` |
`z^2` | `=(sqrt3/2 – 1/2 i)^2` | |
`=3/4 – 2 sqrt3/2 * 1/2 i -1/4` | ||
`=1/2 – sqrt3/2 i` |
`=>C`
`text(Solution 2)`
`text(Let)\ \ text(arg)(z)` | `= theta` |
`text(arg)(z^2)` | `= 2 theta` |
`text(arg)(-i bar z)` | `=text(arg)(i bar z) – pi` |
`= text(arg) (bar z) – pi + pi/2` | |
`= -theta – pi/2` |
`:. 2 theta` | `= -theta – pi/2` |
`3 theta` | `= -pi/2` |
`theta` | `= -pi/6` |
`=> C`
It is given that `a`, `b` are real and `p`, `q` are purely imaginary.
Which pair of inequalities must always be true?
`B`
`a, b ->\ text(real)qquad\ p, q ->\ text(purely imaginary)`
`=> ab, pq, (ab – pq)\ text(are real)`
`=> ap, bq, (ap – bq)\ text(are purely imaginary.)`
`(ab – pq)^2` | `>= 0` |
`a^2b^2 + p^2q^2` | `>= 2abpq\ \ (text(Eliminate A and C))` |
`(ap – bq)^2` | `<= 0` |
`a^2p^2 + b^2q^2` | `<= 2abpq` |
`=>B`
Write `i^{9}` in the form `a + ib` where `a` and `b` are real. (1 mark)
`0 + 1i`
`i^{9}` | `= i xx i^{8}` |
`= i` | |
`= 0 + 1i` |