Using partial fractions, show that
`int_0^(1/2) 8/(1-x^4)\ dx = log_e 9-4 tan^(−1) (1/2)` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using partial fractions, show that
`int_0^(1/2) 8/(1-x^4)\ dx = log_e 9-4 tan^(−1) (1/2)` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Using partial fractions:)`
`8/(1-x^4) = A/(1-x^2) + B/(1 + x^2)`
`A(1 + x^2) + B(1-x^2)` | `= 8` |
`A + B + (A-B)x^2` | `= 8` |
`A + B` | ` = 8\ \ …\ (1)` |
`A-B` | ` = 0\ \ …\ (2)` |
`A = 4, \ B = 4`
`4/(1-x^2) = A/(1-x) + B/(1 + x)`
`A(1 + x) + B(1-x)` | `= 4` |
`A + B + (A-B)x` | `= 4` |
`A + B` | `= 4\ \ …\ (1)` |
`A-B` | `= 0\ \ …\ (2)` |
`A = 2, B = 2`
`int_0^(1/2) 8/(1-x^4)\ dx` | `= int_0^(1/2) 2/(1-x) + 2/(1 + x) + 4/(1 + x^2)\ dx` |
`= [−2ln |1-x| + 2ln |1 + x| + 4tan^(−1)x]_0^(1/2)` | |
`= [2ln |(1 + x)/(1-x)| + 4tan^(−1)x]_0^(1/2)` | |
`= 2ln |(1 1/2)/(1/2)| + 4tan^(−1)(1/2)-(2ln1 + 4tan^(−1) 0)` | |
`= 2ln3 + 4tan^(−1)(1/2)` | |
`= ln9 + 4tan^(−1)(1/2)` |
It can be shown that
`qquad (8(1-x))/((2-x^2)(2-2x+x^2)) = (4-2x)/(2-2x+x^2)-(2x)/(2-x^2)` (do NOT prove this)
Use this result to evaluate `int_0^1 (8(1-x))/((2-x^2)(2-2x+x^2))\ dx` (4 marks)
`pi/2`
`int_0^1 (8(1-x))/((2-x^2)(2-2x+x^2))\ dx`
`=int_0^1 (4-2x)/(2-2x+x^2)\ dx-int_0^1 (2x)/(2-x^2)\ dx`
`=int_0^1 (2-(2x-2))/(2-2x+x^2)\ dx + [log_e|2-x^2|]_0^1`
`=int_0^1 2/(1+(1-x)^2)-int_0^1 (2x-2)/(2-2x+x^2) + [log_e|2-x^2|]_0^1`
`=[-2tan^(-1)(1-x)]_0^1-[log_e(2-2x+x^2)]_0^1 + [log_e|2-x^2|]_0^1`
`=-2tan^(-1)0+2tan^(-1) 1-(log_e1-log_e2) + (log_e 1-log_e2)`
`=0+2 xx pi/4 + log_e2-log_e 2`
`=pi/2`
It is given that `x^4 + 4 = (x^2 + 2x + 2) (x^2-2x + 2)`.
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `16/(x^4 + 4) = (A + 2x)/(x^2 + 2x + 2) + (B-2x)/(x^2-2x + 2)`
`text(Multiply each side by)\ \ x^4 + 4`
`16 = (A + 2x) (x^2-2x + 2) + (B-2x) (x^2 + 2x + 2)`
`text(When)\ \ x = 0,`
`2A + 2B` | `=16` |
`A + B` | `= 8\ text{… (1)}` |
`text(When)\ \ x = 1`
`(A + 2) (1) + (B-2) (5)` | `=16` |
`A + 2 + 5B-10` | `=16` |
`A + 5B` | `= 24\ text{… (2)}` |
`text{Subtract (2) – (1)}`
`4B=16\ \ =>\ \ B=4`
`A=4`
ii. `int_0^m 16/(x^4 + 4)`
`= int_0^m (4 + 2x)/(x^2 + 2x + 2) dx + int_0^m (4-2x)/(x^2-2x + 2) dx`
`= int_0^m (2x + 2)/(x^2 + 2x + 2) + 2/(x^2 + 2x + 2) dx + int_0^m 2/(x^2-2x + 2)-(2x-2)/(x^2-2x + 2) dx`
`= [ln(x^2 + 2x + 2)]_0^m + int_0^m 2/(1 + (x + 1)^2) dx + int_0^m 2/(1 + (x-1)^2) dx-[ln (x^2-2x + 2)]_0^m`
`= [ln(m^2 + 2m + 2)-ln 2] + [2 tan^(-1) (x + 1)]_0^m + [2 tan^(-1) (x-1)]_0^m-[ln (m^2-2m + 2)-ln 2]`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 [tan^(-1) (m + 1)-tan^(-1) (1)] + 2 [tan^(-1) (m-1)-tan^(-1) (1)]`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 tan^(-1) (m + 1)-2 · pi/4 + 2 tan ^(-1) (m-1) + 2 · pi/4`
`= ln ((m^2 + 2m + 2)/(m^2-2m + 2)) + 2 tan^(-1) (m + 1) + 2 tan^(-1) (m-1)`
iii. `I = int_0^m 16/(x^4 + 4) = ln ((1 + 2/m + 2/m^2)/(1-2/m + 2/m^2)) + 2 tan^(-1) (m + 1) + 2 tan^(-1) (m-1)`
`lim_(m -> oo) I` | `= ln\ 1 + 2 · pi/2 + 2 · pi/2` |
`= 0 + pi + pi` | |
`= 2 pi` |