SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT2 C1 2022 HSC 4 MC

Of the following expressions, which one need NOT contain a term involving a logarithm in its anti-derivative?

  1. `(x+2)/(x^(2)+4x+5)`
  2. `(x+2)/(x^(2)-4x-5)`
  3. `(x-1)/(x^(3)-x^(2)+x-1)`
  4. `(x+1)/(x^(3)-x^(2)+x-1)`
Show Answers Only

`C`

Show Worked Solution

`text{Consider the denominator of}\ C:`

`x^(3)-x^(2)+x-1` `=x^2(x-1)+(x-1)`  
  `=(x^2+1)(x-1)`  

 
`(x-1)/(x^(3)-x^(2)+x-1)=(x-1)/((x^2+1)(x-1))=1/(x^2+1)`

`int 1/(x^2+1)\ dx=tan^(-1)(x)+c`

`=>C`

Filed Under: Substitution and Harder Integration, Trig Integration Tagged With: Band 4, smc-1057-10-Trig, smc-1057-20-Logs, smc-1193-15-tan

Calculus, EXT2 C1 2019 SPEC1-N 4

Evaluate  `int_(e^3) ^(e^4) (1)/(x log_e (x))\ dx`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`log_e ((4)/(3))`

Show Worked Solution

`text(Let)\ \ u = log_e x`

`(du)/(dx) = (1)/(x) \ => \ du = (1)/(x) dx`

`text(When) \ \ x = e^4 \ => \ u = 4`

`text(When) \ \ x = e^3 \ => \ u = 3`

`int_(e^3) ^(e^4) (1)/(x log_e (x))` `= int_3 ^4 (1)/(u)\ du`
  `= [ log_e u]_3 ^4`
  `= log_e 4 – log_e 3`
  `= log_e ((4)/(3))`

Filed Under: Substitution and Harder Integration Tagged With: Band 3, smc-1057-20-Logs, smc-1057-60-Substitution not given

Calculus, EXT2 C1 2009 HSC 1a

Find  `int (ln x)/x\ dx.`   (2 marks)

Show Answers Only

`((ln x)^2)/2 + c`

Show Worked Solution

`text(Let)\ \ u=lnx,\ \ \ du=1/x\ dx`

`int (ln x)/x \ dx` `=int u\ du`
  `=1/2 u^2 +c`
  `=1/2 (ln x)^2 +c`

Filed Under: Harder Integration Examples, Substitution and Harder Integration Tagged With: Band 3, smc-1057-20-Logs, smc-1057-60-Substitution not given

Calculus, EXT2 C1 2010 HSC 1b

Evaluate  `int_0^(pi/4) tan\ x\ dx`.   (3 marks) 

Show Answers Only

`1/2 ln 2 \ \ text(or)\ \ ln\ sqrt2`

Show Worked Solution
`int_0^(pi/4) tan\ x\ dx` `=int_0^(pi/4) (sin\ x)/(cos\ x)\ dx`
  `=[-ln\ cos\ x]_0^(pi/4)`
  `=[-ln\ cos\ pi/4 – (-ln cos 0)]`
  `=-ln\ 1/sqrt2 + ln\ 1`
  `=ln sqrt2`
  `=1/2 ln 2`

Filed Under: Harder Integration Examples, Substitution and Harder Integration, Trig Integrals, Trig Integration Tagged With: Band 3, smc-1057-10-Trig, smc-1057-20-Logs, smc-1193-15-tan

Calculus, EXT2 C1 2012 HSC 11e

Evaluate  `int_0^1 (e^(2x))/(e^(2x) + 1)\ dx`.  (3 marks)

Show Answers Only

`1/2log_e((e^2 + 1)/2)`

Show Worked Solution
`int_0^1 (e^(2x))/(e^(2x) + 1)\ dx` `= 1/2[log_e(e^(2x) + 1)]_0^1`
  `= 1/2[log_e(e^2 + 1) − log_e2]`
  `= 1/2log_e((e^2 + 1)/2)`

Filed Under: Harder Integration Examples, Substitution and Harder Integration Tagged With: Band 3, smc-1057-20-Logs, smc-1057-30-Exponential

Calculus, EXT2 C1 2013 HSC 14a

The diagram shows the graph  `y = ln x.`
 


 

By comparing relevant areas in the diagram, or otherwise, show that

`ln t > 2 ((t - 1)/(t + 1))`, for `t > 1.`  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution
`text(Area under curve)` `>\ text(Area of triangle)`
`int_1^t ln x\ dx` `> 1/2 xx (t – 1)ln t,\ \ \ t > 1`
`underbrace{int_1^t 1\ln x\ dx}_text(integration by parts)` `> 1/2 xx (t – 1)ln t`
`[x ln x]_1^t – int_1^t x * 1/x\ dx` `> ((t – 1)ln t)/2`
`(tlnt – ln 1) – [x]_1^t` `> ((t – 1)ln t)/2`
`t ln t – (t – 1)` `> ((t – 1) ln t)/2`
`2t ln t – 2t + 2` `> t ln t – ln t`
`t ln t + ln t` `> 2(t – 1)`
`(t + 1) ln t` `> 2 (t – 1)`
`ln t` `> 2 ((t – 1)/(t + 1)),\ \ \ t > 1`

Filed Under: Harder Integration Examples, Substitution and Harder Integration Tagged With: Band 4, smc-1057-20-Logs, smc-1057-40-Other Functions

Copyright © 2014–2025 SmarterEd.com.au · Log in