It is given that \(A=\displaystyle \int_2^4 \frac{e^x}{x-1}\, dx\).
Show that \(\displaystyle \int_{m-4}^{m-2} \frac{e^{-x}}{x-m+1}\, d x=k A\), where \(k\) and \(m\) are constants. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
It is given that \(A=\displaystyle \int_2^4 \frac{e^x}{x-1}\, dx\).
Show that \(\displaystyle \int_{m-4}^{m-2} \frac{e^{-x}}{x-m+1}\, d x=k A\), where \(k\) and \(m\) are constants. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(A=\displaystyle \int_2^4 \frac{e^x}{x-1}\,d x\)
\(\text{Let} \ \ u=m-x\)
\(\dfrac{d u}{d x}=-1 \ \ \Rightarrow \ \ du=-d x\)
\(\text{When} \ \ x=4, \ u=m-4\)
\(\text{When} \ \ x=2, \ u=m-2\)
| \(A\) | \(=-\displaystyle\int_{m-2}^{m-4} \frac{e^{m-u}}{m-u-1}\, du\) |
| \(=-e^m \displaystyle \int_{m-2}^{m-4} \frac{e^{-u}}{m-u-1}\, du\) | |
| \(=-e^m \times \left[\displaystyle \int_{m-4}^{m-2} \frac{e^{-u}}{u-m+1}\, du\right]\) |
\(\Rightarrow \displaystyle \int_{m-4}^{m-2} \frac{e^{-x}}{x-m+1}\, d x=kA \ \ (\text{where}\ \ k=-e^{-m})\)
\(A=\displaystyle \int_2^4 \frac{e^x}{x-1}\,d x\)
\(\text{Let} \ \ u=m-x\)
\(\dfrac{d u}{d x}=-1 \ \ \Rightarrow \ \ du=-d x\)
\(\text{When} \ \ x=4, \ u=m-4\)
\(\text{When} \ \ x=2, \ u=m-2\)
| \(A\) | \(=-\displaystyle\int_{m-2}^{m-4} \frac{e^{m-u}}{m-u-1}\, du\) |
| \(=-e^m \displaystyle \int_{m-2}^{m-4} \frac{e^{-u}}{m-u-1}\, du\) | |
| \(=-e^m \times \left[\displaystyle \int_{m-4}^{m-2} \frac{e^{-u}}{u-m+1}\, du\right]\) |
\(\Rightarrow \displaystyle \int_{m-4}^{m-2} \frac{e^{-x}}{x-m+1}\, d x=kA \ \ (\text{where}\ \ k=-e^{-m})\)
Using the substitution `u=1+e^x, \int_0^{\log _e 2} \frac{1}{1+e^x}dx` can be expressed as
`D`
`u=1+e^x\ \ =>\ \ \frac{du}{dx}=e^x\ \ =>\ \ dx=\frac{du}{e^x}=\frac{du}{u-1}`
`text{When}\ \ x=0,\ \ u=2`
`text{When}\ \ x=\log_e 2,\ \ u=1+e^{\log_e 2} = 3`
`\int_0^{\log _e 2} \frac{1}{1+e^x}dx = \int_2^3\left(\frac{1}{u}*\frac{1}{u-1}\right) du= \int_2^{1+e^2}\left(\frac{1}{u-1}-\frac{1}{u}\right) du`
`=>D`
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = -x \ => \ du = -dx`
`text(When)\ \ x=a, \ u=-a`
`text(When)\ \ x=-a, \ u=a`
| `int_(-a)^a (f(x))/(f(x) + f(-x))\ dx` | `= -int_a^(-a) (f(-u))/(f(-u) + f(u))\ du` |
| `= int_(-a)^a (f(-u))/(f(u) + f(-u))\ du` | |
| `= int_(-a)^a (f(-x))/(f(x) + f(-x))\ dx` |
ii. `text(Let)\ \ I = int_(-1)^1 (e^x)/(e^x + e^(-x))\ dx`
| `2I` | `= int_(-1)^1 (e^x)/(e^x + e^(-x))\ dx + int_(-1)^1 (e^(-x))/(e^x + e^(-x))\ dx` |
| `2I` | `= int_(-1)^1 (e^x + e^(-x))/(e^x + e^(-x))\ dx` |
| `2I` | `= [x]_(-1)^1` |
| `2I` | `= 2` |
`:. int_(-1)^1 (e^x)/(e^x + e^(-x))\ dx = 1`
Evaluate `int_0^1 (e^(2x))/(e^(2x) + 1)\ dx`. (3 marks)
`1/2log_e((e^2 + 1)/2)`
| `int_0^1 (e^(2x))/(e^(2x) + 1)\ dx` | `= 1/2[log_e(e^(2x) + 1)]_0^1` |
| `= 1/2[log_e(e^2 + 1) − log_e2]` | |
| `= 1/2log_e((e^2 + 1)/2)` |