SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2* M1 2019 HSC 13c

A particle moves in a straight line. At time  `t`  seconds the particle has a displacement of `x` m, a velocity of  `v\ text(m s)^(-1)`  and acceleration  `a\ text(m s)^(-2)`.

Initially the particle has displacement  0 m  and velocity  `2\ text(m s)^(-1)`. The acceleration is given by  `a = -2e^(-x)`. The velocity of the particle is always positive.

  1. Show that  `v = 2e^((-x)/2)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find an expression for `x` as a function of  `t`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `x = 2 ln(t + 1)`
Show Worked Solution
i.    `a` `= -2e^(-x)`
  `d/(dx)(1/2v^2)` `= -2e^(-x)`
  `1/2 v^2` `= int -2e^(-x) dx`
    `= 2e^(-x) + C`

 
`text(When)\ \ x = 0,\ \ v = 2:`

`1/2 ⋅ 2^2` `= 2e^0 + C`
`C` `= 0`
`1/2 v^2` `= 2e^(-x)`
`v^2` `= 4e^(-x)`
`v` `= +-(4e^(-x))^(1/2)`
  `= +-2e^(-x/2)`

 
`text(S)text(ince)\ \ v = 2\ \ text(when)\ \ x = 0,`

`v = 2e^((-x)/2)`

 

ii.    `(dx)/(dt)` `= 2e^((-x)/2)`
  `(dt)/(dx)` `= (e^(x/2))/2`
  `t` `= 1/2 int e^(x/2) dx`
    `= 1/2 xx 2 xx e^(x/2) + C`
    `= e^(x/2) + C`

 
`text(When)\ \ t = 0,\ \ x = 0:`

♦ Mean mark part (ii) 46%.

`0` `= e^0 + C`
`C` `= -1`
`t` `= e^(x/2) – 1`
`e^(x/2)` `= t + 1`
`x/2` `= ln (t + 1)`
`:. x` `= 2 ln (t + 1)`

Filed Under: Motion Without Resistance Tagged With: Band 4, smc-1060-02-Motion as f(x), smc-1060-20-Exponential

Mechanics, EXT2* M1 2017 HSC 12d

At time `t` the displacement, `x`, of a particle satisfies  `t=4-e^(-2x)`.

Find the acceleration of the particle as a function of `x`.  (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`(e^(4x))/2`

Show Worked Solution
`t` `= 4 – e^(−2x)`
`(dt)/(dx)` `= 2e^(−2x)`
`(dx)/(dt)` `= (e^(2x))/2`

 

`a` `= {:d/(dx):}^(1/2v^2)`
  `= d/(dx)(1/2 · ((e^(2x))/2)^2)`
  `= d/(dx)((e^(4x))/8)`
  `= 4 · (e^(4x))/8`
  `= (e^(4x))/2`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, smc-1060-02-Motion as f(x), smc-1060-20-Exponential

Mechanics, EXT2* M1 2007 HSC 3c

A particle is moving in a straight line with its acceleration as a function of  `x`  given by  `ddot x = -e^(-2x)`. It is initially at the origin and is travelling with a velocity of 1 metre per second.

  1. Show that  `dot x = e^(-x)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence show that  `x = log_e(t + 1)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
Show Worked Solution

i.   `text(Show that)\ \ dot x = e^(−x)`

`ddot x` `= d/(dx)\ (1/2 (dot x)^2) = −e^(−2x)`
`1/2 (dot x)^2` `= int −e^(−2x)\ dx`
  `= 1/2 e^(−2x) + c`

 
`text(When)\ \ x = 0, \ dot x = 1,`

`1/2 · 1^2` `= 1/2 e^0 + c`
`1/2` `= 1/2 + c`
`:.c` `= 0`

 

MARKER’S COMMENT: Most candidates “neglected” to consider the two cases that  `dot x=+-e^(-x)`.
`1/2 (dot x)^2` `= 1/2 e^(−2x)`
`(dot x)^2` `= e^(−2x)`
`dot x` `= +-e^(−x)`

 
`text(Given initial conditions:)\ \ x=0, dot x = 1,`

`dot x = e^(-x)\ \ text(… as required)`

 

ii.   `text(Show)\ \ x = log_e(t + 1)`

`(dx)/(dt)` `= e^(−x)`
`(dt)/(dx)` `= e^x`
`t` `= int e^x`
  `= e^x + c`

 

`text(When)\ \ t = 0, \ x = 0`

`0` `= e^0 + c`
`c` `= −1`
`:.t` `= e^x − 1`
`e^x` `= t + 1`
`log_ee^x` `= log_e(t + 1)`
`x` `= log_e(t + 1)\ …\ text(as required.)`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, smc-1060-02-Motion as f(x), smc-1060-20-Exponential

Mechanics, EXT2* M1 2007 HSC 2d

A skydiver jumps from a hot air balloon which is 2000 metres above the ground. The velocity, `v` metres per second, at which she is falling  `t`  seconds after jumping is given by  `v =50(1 - e^(-0.2t))`.

  1. Find her acceleration ten seconds after she jumps. Give your answer correct to one decimal place.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the distance that she has fallen in the first ten seconds. Give your answer correct to the nearest metre.  (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1.4\ text(ms)^(−2)\ \ text{(to 1 d.p.)}`
  2. `284\ text{m  (nearest m)}`
Show Worked Solution
i.     `v` `= 50(1 − e^(-0.2t))`
    `=50-50e^(-0.2t)`
  `ddot x` `= (dv)/(dt)`
    `= −0.2 xx 50 xx −e^(−0.2t)`
    `= 10 e^(−0.2t)`

 
`text(When)\ \ t = 10:`

`ddot x` `= 10 e^(−0.2 xx 10)`
  `= 10 e ^(−2)`
  `= 1.353…`
  `= 1.4\ text(ms)^(−2)\ \ \ text{(to 1 d.p.)}`

 

ii.  `text(Distance travelled)`

`= int_0^10 v\ dt`

`= 50 int_0^10 1 − e^(−0.2t) \ dt`

`= 50 [t + 1/0.2 · e^(−0.2t)]_0^10`

`= 50 [t + 5e^(−0.2t)]_0^10`

`= 50 [(10 + 5e^(−2)) − (0 + 5e^0)]`

`= 50 [10 + 5e^(−2) − 5]`

`= 50 [5 + 5e^(−2)]`

`= 283.833…`

`= 284\ text{m  (nearest m)}`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 3, Band 4, smc-1060-04-Motion as f(t), smc-1060-20-Exponential

Mechanics, EXT2* M1 2014 HSC 12c

A particle moves along a straight line with displacement  `x\ text(m)`  and velocity  `v\ \ text(ms)^(-1)`. The acceleration of the particle is given by

 `ddot x = 2 - e^(-x/2)`.

Given that  `v = 4`  when  `x = 0`, express  `v^2`  in terms of  `x`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`v^2 = 4x + 4e^(-x/2) + 12`

Show Worked Solution

`ddot x = d/(dx) (1/2 v^2) = 2 – e^(-x/2)`

`1/2 v^2` `= int (2 – e^(-x/2))\ dx`
  `= 2x + 2e^(-x/2) + c`
`v^2` `= 4x + 4e^(-x/2) + c`

 
`text(When)\ \ v = 4, x = 0:`

`:. 4^2` `= 0 + 4e^0 + c`
`16` `= 4 + c`
`c` `= 12`

 
`:.\ v^2 = 4x + 4e^(-x/2) + 12`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, smc-1060-02-Motion as f(x), smc-1060-20-Exponential

Copyright © 2014–2025 SmarterEd.com.au · Log in