SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2 M1 2020 HSC 16a

Two masses, `2m` kg and `4m` kg, are attached by a light string. The string is placed over a smooth pulley as shown.

The two masses are at rest before being released and `v` is the velocity of the larger mass at time `t` seconds after they are released.
 


 

The force due to air resistance on each mass has magnitude `kv`, where `k` is a positive constant.

  1. Show that  `frac{dv}{dt} = frac{gm-kv}{3m}`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Given that  `v < frac{gm}{k}`, show that when  `t = frac{3m}{k} ln 2`, the velocity of the larger mass is  `frac{gm}{2k}`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{See Worked Solutions}`
  2. `text{See Worked Solutions}`
Show Worked Solution

i. 

♦ Mean mark part (i) 37%.

`text{Taking} \ v \ text{downwards as positive.}`

`text{Forces acting on}\ 2m\ text{mass:}`
  
`kv + 2 mg-T = -2m * frac{dv}{dt}\ …\ (1)`
  
`text{Forces acting our} \ 4m \ text{mass:}`
 
`4mg-kv-T = 4m * frac{dv}{dt}\ …\ (2)`

`text{Subtract} \ \ (2)-(1)`

`2 mg-2 kv` `= 6 m * frac{dv}{dt}`
`:. frac{dv}{dt}` `= frac{2mg-2 kv}{6 m}`
  `= frac{gm-kv}{3m}`

 

ii.    `frac{dv}{dt}` `= frac{gm-kv}{3m}`
  `frac{dt}{dv}` `= frac{3m}{gm-kv}`
  `t` `= int frac{3m}{gm-kv}\ dv`
    `= -frac{3m}{k} log_e |gm-kv | + c`

 
`text{When} \ \ t = 0, v = 0:`

`0` `= -frac{3m}{k} log_e \ | gm | + c`
`c` `= frac{3m}{k} log_e \ | gm | `
`t` `= frac{3m}{k} log_e  \ | gm | \-frac{3m}{k} log_e  \ | gm -kv |`
  `= frac{3m}{k} log_e \ | frac{mg}{gm-kv} |`

 
`text{Find} \ \ v\ \ text{when} \ \ t = frac{3m}{k} log_e 2 :`

`frac{3m}{k} log_e 2` `= frac{3m}{k} log_e | frac{gm}{gm-kv} |`
`2` `= frac{gm}{gm-kv}`
`2gm-2kv` `= gm`
`2kv` `= gm`
`therefore \ v` `= frac{gm}{2k}`

 

Filed Under: Resisted Motion Tagged With: Band 4, Band 5, smc-1061-09-Pulleys

Copyright © 2014–2025 SmarterEd.com.au · Log in