Differentiate `(2x + 1)/(x + 5)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Differentiate `(2x + 1)/(x + 5)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`9/(x + 5)^2`
`text(Using quotient rule:)`
`u=2x+1,` | `v=x+5` | |
`u^{′} = 2,` | `v^{′} = 1` | |
`y^{′}` | `= (u^{′} v-v^{′} u)/v^2` |
`= (2(x + 5)-(2x + 1))/(x + 5)^2` | |
`= (2x + 10-2x-1)/(x + 5)^2` | |
`= 9/(x + 5)^2` |
Differentiate `(x + 2)/(3x - 4).` (2 marks)
`(-10)/(3x – 4)^2`
`y = (x + 2)/(3x – 4)`
`text(Using the quotient rule:)`
`(g/h) prime` | `= (g prime h – g h prime)/h^2` |
`y prime` | `= (1 (3x – 4) – (x + 2) · 3)/(3x – 4)^2` |
`= (-10)/(3x – 4)^2` |
Find `f^{′}(x)`, where `f(x) = (x^2 + 3)/(x-1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`((x-3) (x + 1))/(x-1)^2`
`f(x) = (x^2 + 3)/(x-1)`
`text(Using the quotient rule:)`
`u` | `= x^2 + 3` | `\ \ \ \ \ \ v` | `= x-1` |
`u^{′}` | `= 2x` | `\ \ \ \ \ \ v^{′}` | `= 1` |
`f^{′}(x)` | `= (u^{′} v-uv^{′})/v^2` |
`= (2x (x-1)-(x^2 + 3) xx 1)/(x-1)^2` | |
`= (2x^2-2x-x^2-3)/(x-1)^2` | |
`= (x^2-2x-3)/(x-1)^2` | |
`= ((x-3) (x + 1))/(x-1)^2` |
Differentiate with respect to `x`:
`x^2/(x − 1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x(x − 2))/(x − 1)^2`
`y = x^2/(x − 1)`
`text(Using)\ \ dy/dx = (u′v − uv′)/v^2`
`u` | `= x^2` | `v` | `= x − 1` |
`u′` | `= 2x` | `v′` | `= 1` |
`dy/dx` | `= (2x(x − 1) − x^2(1))/(x − 1)^2` |
`= (2x^2 − 2x − x^2)/(x − 1)^2` | |
`= (x^2 − 2x)/(x − 1)^2` | |
`= (x(x − 2))/(x − 1)^2` |
Differentiate `x^3/(x + 1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x^2(2x + 3))/((x + 1)^2)`
`y = (x^3)/(x + 1)`
`text(Using)\ \ \ dy/dx = (u prime v\ – uv prime)/(v^2)`
`u` | `=x^3` | `\ \ \ \ \ v` | `=(x+1)` |
`u ′` | `=3x^2` | `v′` | `=1` |
`dy/dx` | `= (3x^2 (x + 1)\ – x^3 (1))/((x + 1)^2)` |
`= (3x^3 + 3x^2\ – x^3)/((x + 1)^2)` | |
`= (2x^3 + 3x^2)/((x + 1)^2)` | |
`= (x^2 (2x + 3))/((x + 1)^2)` |