Differentiate `(4x + 3)/(3x-4)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Differentiate `(4x + 3)/(3x-4)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-25/(3x-4)^2`
`text(Using quotient rule:)`
| `u=4x+3,` | `v=3x-4` | |
| `u^{′} = 4,` | `v^{′} = 3` | |
| `y^{′}` | `= (u^{′} v-v^{′} u)/v^2` |
| `= (4(3x-4)-3(4x+3))/(3x-4)^2` | |
| `= (12x-16-12x-9)/(3x-4)^2` | |
| `= -25/(3x-4)^2` |
Find `f^{′}(x)`, where `f(x) = (2x^2-3x)/(2-x).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`((x-3) (x + 1))/(x-1)^2`
`f(x) = (2x^2-3x)/(2-x)`
`text(Using the quotient rule:)`
| `u` | `= 2x^2-3x` | `\ \ \ \ \ \ v` | `= 2-x` |
| `u^{′}` | `= 4x-3` | `\ \ \ \ \ \ v^{′}` | `= -1` |
| `f^{′}(x)` | `= (u^{′} v-uv^{′})/v^2` |
| `= ((4x-3)(2-x)-(2x^2-3x) xx -1)/(2-x)^2` | |
| `= (-2x^2 + 8x-6)/(x-2)^2` | |
| `= (-2(x^2-4x+3)/(x-2)^2` | |
| `= (-2(x-3) (x-1))/(x-2)^2` |
Two functions, \(f\) and \(g\), are continuous and differentiable for all \(x\in R\). It is given that \(f(-1)=7,\ g(-1)=5\) and \(f^{′}(-1)=-4,\ g^{′}(-1)=-2\).
The gradient of the graph \(y=\dfrac{f(x)}{g(x)}\) at the point where \(x=-1\) is
\(D\)
\(\text{Using the Quotient Rule when}\ \ x=-1:\)
| \(\dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)\) | \(=\dfrac{g(x)f^{′}(x)-f(x)g^{′}(x)}{g(x)^2}\) |
| \(=\dfrac{g(-1)f^{′}(-1)-f(-1)g^{′}(-1)}{g(-1)^2}\) | |
| \(=\dfrac{5 \times -4-7 \times -2}{5^2}\) | |
| \(=-\dfrac{6}{25}\) |
\(\Rightarrow D\)
Let `h(x)=(f(x))/(g(x))`, where
`{:[f(1)=2, qquad f^{′}(1)=4],[g(1)=8, qquad g^{′}(1)=12]:}`
What is the gradient of the tangent to the graph of `y=h(x)` at `x=1` ?
`D`
`text{Using the quotient rule:}`
| `h^{′}(1)` | `=(g(1)\ f^{′}(1)-f(1)\ g^{′}(1))/[g(1)]^2` | |
| `=(8xx4-2xx12)/(8^2)` | ||
| `=(32-24)/64` | ||
| `=1/8` |
`=>D`
Differentiate `(2x + 1)/(x + 5)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`9/(x + 5)^2`
`text(Using quotient rule:)`
| `u=2x+1,` | `v=x+5` | |
| `u^{′} = 2,` | `v^{′} = 1` | |
| `y^{′}` | `= (u^{′} v-v^{′} u)/v^2` |
| `= (2(x + 5)-(2x + 1))/(x + 5)^2` | |
| `= (2x + 10-2x-1)/(x + 5)^2` | |
| `= 9/(x + 5)^2` |
Differentiate `(x + 2)/(3x - 4).` (2 marks)
`(-10)/(3x – 4)^2`
`y = (x + 2)/(3x – 4)`
`text(Using the quotient rule:)`
| `(g/h) prime` | `= (g prime h – g h prime)/h^2` |
| `y prime` | `= (1 (3x – 4) – (x + 2) · 3)/(3x – 4)^2` |
| `= (-10)/(3x – 4)^2` |
Find `f^{′}(x)`, where `f(x) = (x^2 + 3)/(x-1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`((x-3) (x + 1))/(x-1)^2`
`f(x) = (x^2 + 3)/(x-1)`
`text(Using the quotient rule:)`
| `u` | `= x^2 + 3` | `\ \ \ \ \ \ v` | `= x-1` |
| `u^{′}` | `= 2x` | `\ \ \ \ \ \ v^{′}` | `= 1` |
| `f^{′}(x)` | `= (u^{′} v-uv^{′})/v^2` |
| `= (2x (x-1)-(x^2 + 3) xx 1)/(x-1)^2` | |
| `= (2x^2-2x-x^2-3)/(x-1)^2` | |
| `= (x^2-2x-3)/(x-1)^2` | |
| `= ((x-3) (x + 1))/(x-1)^2` |
Differentiate with respect to `x`:
`x^2/(x − 1).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x(x − 2))/(x − 1)^2`
`y = x^2/(x − 1)`
`text(Using)\ \ dy/dx = (u′v − uv′)/v^2`
| `u` | `= x^2` | `v` | `= x − 1` |
| `u′` | `= 2x` | `v′` | `= 1` |
| `dy/dx` | `= (2x(x − 1) − x^2(1))/(x − 1)^2` |
| `= (2x^2 − 2x − x^2)/(x − 1)^2` | |
| `= (x^2 − 2x)/(x − 1)^2` | |
| `= (x(x − 2))/(x − 1)^2` |
Differentiate `x^3/(x + 1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x^2(2x + 3))/((x + 1)^2)`
`y = (x^3)/(x + 1)`
`text(Using)\ \ \ dy/dx = (u prime v\ – uv prime)/(v^2)`
| `u` | `=x^3` | `\ \ \ \ \ v` | `=(x+1)` |
| `u ′` | `=3x^2` | `v′` | `=1` |
| `dy/dx` | `= (3x^2 (x + 1)\ – x^3 (1))/((x + 1)^2)` |
| `= (3x^3 + 3x^2\ – x^3)/((x + 1)^2)` | |
| `= (2x^3 + 3x^2)/((x + 1)^2)` | |
| `= (x^2 (2x + 3))/((x + 1)^2)` |