SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Combinatorics, EXT1 A1 2022 HSC 11c

Find the coefficients of `x^(2)` and `x^(3)` in the expansion of `(1-(x)/(2))^(8)`.  (2 marks)

Show Answers Only

`x^2: 7, \ x^3:-7`

Show Worked Solution

`text{General Term:}\ (1-(x)/(2))^(8) `

`T_k` `=((8),(k))(1)^(8-k)(- x/2)^k`  
  `=((8),(k))(- 1/2)^k x^k`  

 
`text{Coefficient of}\ \ x^2 = ((8),(2))(- 1/2)^2=7`

`text{Coefficient of}\ \ x^3 = ((8),(3))(- 1/2)^3=-7`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-10-Coefficients

Combinatorics, EXT1 A1 2019 13b

In the expansion of  `(5x + 2)^20`, the coefficients of  `x^r`  and  `x^(r + 1)`  are equal.

What is the value of  `r` ?  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`14`

Show Worked Solution

`(5x + 2)^20`

COMMENT: Arithmetic becomes easier by expanding  `(2 + 5x)^20`.

`text(General term:)\ (2 + 5x)^20`

`T_r` `= \ ^20C_r · 2^(20 – r) · (5x)^r`
  `= \ ^20C_r · 2^(20 – r) · 5^r · x^r`
`T_(r + 1)` `=\ ^20C_(r + 1) · 2^(19 – r) · 5^(r + 1) · x^(r + 1)`

 

`text(Equating co-efficients:)`

`(20!)/(r!(20 – r)!) · 2^(20 – r) · 5^r` `= (20!)/((r + 1)!(19 – r)!) · 2^(19 – r) · 5 ^(r + 1)`
`2/(20 – r)` `= 5/(r + 1)`
`2r + 2` `= 100 – 5r`
`7r` `= 98`
`r` `= 14`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-10-Coefficients

Combinatorics, EXT1 A1 EQ-Bank 3

Find the coefficient of  `x^4`  in the expansion of  `(x^2 - 3/x)^5`.  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`90`

Show Worked Solution

`text(General term:)`

`T_k` `= \ ^5C_k(x^2)^(5 – k) · (−3/x)^k`
  `= \ ^5C_k · x^(10 – 2k)(−3)^k · x^(−k)`
  `= \ ^5C_k · x^(10 – 3k) · (−3)^k`

 
`text(Coefficient of)\ \ x^4\ \ text(occurs when)`

`10 – 3k` `= 4`
`3k` `= 6`
`k` `= 2`

 
`:.\ text(Coefficient of)\ \ x^4`

`= \ ^5C_2·(−3)^2`

`= 90`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-10-Coefficients

Combinatorics, EXT1 A1 2015 HSC 13b

Consider the binomial expansion
 

`(2x + 1/(3x))^18 = a_0x^(18) + a_1x^(16) + a_2x^(14) + …`
 

where `a_0, a_1, a_2`, . . . are constants.

  1. Find an expression for `a_2`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find an expression for the term independent of `x`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(\ ^18C_2 · 2^(16))/(3^2)`
  2. `(\ ^(18)C_9 · 2^9)/(3^9)`
Show Worked Solution

i.   `text(Need co-efficient of)\ x^(14)`

`text(General term of)\ (2x + 1/(3x))^(18)`

`T_k` `= \ ^(18)C_k(2x)^(18 − k) · (1/(3x))^k`
  `= \ ^(18)C_k · 2^(18 − k) · x^(18 − k) · 3^(−k) · x^(−k)`
  `= \ ^(18)C_k · 2^(18 − k) · 3^(−k) · x^(18 − 2k)`

 

`a_2\ text(occurs when:)`

`18 − 2k` `= 14`
`2k` `= 4`
`k` `= 2`

 

`:.a_2` `= \ ^(18)C_2 · 2^(18 − 2) · 3^(−2)`
  `= (\ ^(18)C_2 · 2^(16))/(3^2)`

 

ii.  `text(Independent term occurs when:)`

`18 − 2k` `= 0`
`2k` `= 18`
`k` `= 9`

 
`:.\ text(Independent term)`

`= \ ^(18)C_9 · 2^(18− 9) · 3^(−9)`

`= (\ ^(18)C_9 · 2^9)/(3^9)`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 3, Band 4, smc-1088-10-Coefficients, smc-1088-20-Independent Term

Combinatorics, EXT1 A1 2008 HSC 1d

Find an expression for the coefficient of  `x^8 y^4`  in the expansion of  `(2x + 3y)^12`.   (2 marks) 

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`10\ 264\ 320`

Show Worked Solution

`text(Find co-efficient of)\ x^8 y^4 :`

MARKER’S COMMENT: More errors were made by students who used `T_(k+1)` as the general term rather than `T_k` (both are possible). The Worked Solution uses the more successful approach.

`T_k =\ text(General term of)\ (2x + 3y)^12 `

`T_k` `= ((12),(k)) (2x)^(12 – k) * (3y)^k`
  `= ((12),(k)) * 2^(12 – k) * 3^k * x^(12 – k) * y^k`

 

`x^8 y^4\ text(occurs when)\ k = 4`

`T_4` `= ((12),(4)) * 2^(12 – 4) * 3^4 * x^8 y^4`
   
`:.\ text(Co-efficient of)\ x^8y^4`
  `= ((12),(4)) * 2^8 * 3^4`
  `= 10\ 264\ 320`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-10-Coefficients

Combinatorics, EXT1 A1 2011 HSC 2c

Find an expression for the coefficient of  `x^2`  in the expansion of  `(3x - 4/x)^8`.     (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

 `-870\ 912`

Show Worked Solution

`(3x – 4/x)^8 = sum_(k=0)^8\ ^8C_k *(3x)^(8\ – k) *(–4/x)^k`

`text(General term)` `=\ ^8C_k * 3^(8\ – k) * x^(8\ – k) * (–1)^k*4^k * x^(-k)`
  `=\ ^8C_k*(–1)^k * 3^(8\ – k) * 4^k * x^(8\ – 2k)`

 
`text(Co-efficient of)\ \ x^2=2\ \ text(occurs when,)`

` 8 – 2k` `= 2`
`2k` `= 6`
`k` `= 3`

 
`:.\ text(Co-efficient of)\ \ x^2`

`=\ ^8C_3 * (–1)^3*3^5 * 4^3`
`= -56 xx 243 xx 64`
`= -870\ 912`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-10-Coefficients

Copyright © 2014–2025 SmarterEd.com.au · Log in