The graphs of \(y=e\, \ln x\) and \(y=a x^2+c\) are shown. The line \(y=x\) is a tangent to both graphs at their point of intersection.
Find the values of \(a\) and \(c\). (4 marks)
--- 16 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The graphs of \(y=e\, \ln x\) and \(y=a x^2+c\) are shown. The line \(y=x\) is a tangent to both graphs at their point of intersection.
Find the values of \(a\) and \(c\). (4 marks)
--- 16 WORK AREA LINES (style=lined) ---
\(a=\dfrac{1}{2e}, \ c=\dfrac{1}{2} e\)
\begin{array}{ll}
y=e\, \ln x\ \ldots \ (1) & y=a x^2+c\ \ldots \ (2) \\
y^{\prime}=\dfrac{e}{x} & y^{\prime}=2 a x
\end{array}
\(\text{At point of tangency, gradient}=1.\)
\(\text{Find \(x\) such that:}\)
\(\dfrac{e}{x}=1 \ \Rightarrow \ x=e\)
\(\text{At} \ \ x=e, \ y^{\prime}=2 a x=1:\)
\(2ae=1 \ \Rightarrow \ a=\dfrac{1}{2e}\)
\(\text{Find point of tangency using (1):}\)
\(y=e\, \ln e=e\)
\(\text{Point of tangency at} \ (e,e).\)
\(\text{Since} \ (e, e) \text{ lies on (2):}\)
\(e=\dfrac{1}{2e} \times e^2+c\)
\(c=\dfrac{1}{2} e\)
Consider the curve \(y=ax^2+bx+c\), where \(a \neq 0\).
At a particular point, the tangent and normal to the curve are given by \(t(x)=2x+3\) and \(n(x)=-\dfrac{1}{2}x-2\) respectively.
The curve has a minimum turning point at \(x=-4\).
Find the values of \(a, b\) and \(c\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(a=\dfrac{1}{2}, b=4, c=5\)
| \(y\) | \(=ax^{2}+bx+c\) | |
| \(y^{′}\) | \(=2ax+b\) |
\(\text{SP’s when}\ \ y^{′}=0\ \text{and}\ \ x=-4:\)
\(-8a+b=0\ …\ (1)\)
\(\text{Find point where}\ t(x), n(x)\ \text{and curve intersect:}\)
| \(2x+3\) | \(=-\dfrac{1}{2}x-2\) | |
| \(4x+6\) | \(=-x-4\) | |
| \(5x\) | \(=-10\) | |
| \(x\) | \(=-2\) |
\(\Rightarrow\ \text{Intersection at}\ (-2,-1)\)
\(\text{At}\ \ x=-2,\ m_{\text{tang}} = -4a+b\)
\(-4a+b=2\ …\ (2) \)
\(\text{Subtract}\ (2)-(1):\)
\(4a=2\ \ \Rightarrow\ \ a=\dfrac{1}{2}\)
\(\text{Substitute}\ \ a=\dfrac{1}{2}\ \ \text{into (1):}\)
\(\Rightarrow\ \ b=4\)
\(\text{Since}\ (-2,-1)\ \text{lies on}\ y: \)
\(-1=\dfrac{1}{2}(-2)^{2}+4(-2)+c\)
\(\Rightarrow c=5\)
\(\therefore a=\dfrac{1}{2}, b=4, c=5\)
Find the coordinates of the point `P` on the curve `y = 2e^x + 3x` at which the tangent to the curve is parallel to the line `y = 5x - 3`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(0, 2)`
`text(Gradient of)\ \ y = 5x − 3\ text(is)\ 5.`
| `y` | `= 2e^x + 3x` |
| `(dy)/(dx)` | `= 2e^x + 3` |
`text(Find)\ \ x\ \ text(when)\ \ (dy)/(dx) = 5`
| `5` | `= 2e^x + 3` |
| `2e^x` | `= 2` |
| `e^x` | `= 1` |
| `x` | `= 0` |
`text(When)\ \ x = 0`
| `y` | `= 2e^0 + (3 xx 0)` |
| `= 2` |
`:.P\ \ text{has coordinates (0, 2)}`
The line `y = mx` is a tangent to the curve `y = e^(2x)` at a point `P`.
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
| i. | ![]() |
| ii. | `y` | `= e^(2x)` |
| `dy/dx` | `= 2e^(2x)` |
`text(Gradient of)\ \ y = mx\ \ text(is)\ \ m`
`text(Gradients equal when)`
| `2e^(2x)` | `= m` |
| `e^(2x)` | `= m/2` |
| `ln e^(2x)` | `= ln (m/2)` |
| `2x` | `= ln (m/2)` |
| `x` | `= 1/2 ln (m/2)` |
`text(When)\ \ x = 1/2 ln (m/2)`
| `y` | `= e^(2 xx 1/2 ln (m/2))` |
| `= e^(ln(m/2))` | |
| `= m/2` |
`:.\ P (1/2 ln (m/2), m/2)`
iii. `y=mx\ \ text(passes through)\ \ (0,0)\ text(and)\ (1/2 ln (m/2), m/2)`
`text(Equating gradients:)`
| `(m/2 – 0)/(1/2 ln (m/2) – 0)` | `=m` |
| `m/2` | `=m xx 1/2 ln(m/2)` |
| `ln (m/2)` | `= 1` |
| `m/2` | `= e^1` |
| `m` | `= 2e` |