SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Networks, STD2 N2 SM-Bank 30

An amusement park has five toilet areas, `A`, `B`, `C`, `D` and `E`, which are connected by pathways.

The table shows the length of some of the pathways, in metres.
 

 
The following network diagram is drawn to represent this information and a correct minimum spanning tree is shown by the solid lines.

Complete the network diagram including a possible value for each of the two edges `AC` and `BE`, and justify why `AC` and `BE` were not included as part of the minimum spanning tree.  (3 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

 
`BE > 500, AC > 450`

Show Worked Solution

`text(Consider Kruskal’s algorithm for the given minimum spanning tree:)`

`CB ->\ text{1st edge (200 – minimum weight)}`

`BD ->\ text{2nd edge (300)}`

`AD ->\ text{3rd edge (450)}`

`=> AC=460\ \ text{(choose any value such that}\ \ AC>450)`
 

`DE ->\ text{4th edge (500)}`

`=> BE=510\ \ text{(choose any value such that}\ \ BE>500)`
 

`:. BE > 500\ (BE\ text(must be greater than)\ DE)`

`:. AC > 450\ (AC\ text(must be greater than)\ AD)`

Filed Under: Minimum Spanning Trees, Minimum Spanning Trees, Spanning Trees (Std2-2027) Tagged With: Band 4, smc-1138-50-Unknown Edge, smc-6320-50-Unknown Edge, smc-914-50-Unknown Edge

Networks, STD2 N2 2016 FUR1 4 MC

The minimum spanning tree for the network below includes the edge with weight labelled `k`.
 

 
The total weight of all edges for the minimum spanning tree is 33.

The value of `k` is

  1. `2`
  2. `3`
  3. `4`
  4. `5`
Show Answers Only

`D`

Show Worked Solution

`text(Include)\ k\ text(as a given edge before using Kruskal’s Algorithm,)`

`text(Edge 1:)\ k`

`text(Edge 2: 1)`

`text(Edges 3-4: 2)`

`text(Edge 4: 3   etc…)`
 

`:.\ text(Minimum spanning tree)`
 


 

`text(Total weight)` `= k + 1+2+2+3+4+5+5+6`
`33` `= k + 28`
`:. k` `= 5`

 
`=> D`

Filed Under: Minimum Spanning Trees, Minimum Spanning Trees, Spanning Trees (Std2-2027) Tagged With: Band 5, smc-1138-50-Unknown Edge, smc-6320-50-Unknown Edge, smc-914-50-Unknown Edge

Networks, STD2 N2 2007 FUR1 7 MC

The minimal spanning tree for the network below includes two edges with weightings `x` and `y.`
 

 
The length of the minimal spanning tree is 19.

The values of `x` and `y` could be

A.   `x = 1 and y = 7`

B.   `x = 2 and y = 5`

C.   `x = 3 and y = 5`

D.   `x = 4 and y = 5`

Show Answers Only

`C`

Show Worked Solution

`text{Using Kruskal’s Algorithm (as a guide),}`

`text(Minimum spanning tree must be:)`
 


 

`:. 19` `= y + 3 + x + 2 + 1 + 5`
`8` `= x + y`

 
`=>  C`

Filed Under: Minimum Spanning Trees, Minimum Spanning Trees, Spanning Trees (Std2-2027) Tagged With: Band 4, smc-1138-50-Unknown Edge, smc-6320-50-Unknown Edge, smc-914-50-Unknown Edge

Networks, STD2 N2 2006 FUR1 4 MC

networks-fur1-2006-vcaa-4-mc-1

 
The minimal spanning tree for the network above will include the edge that has a weight of

A.     `3`

B.     `6`

C.     `8`

D.     `9`

Show Answers Only

`D`

Show Worked Solution

`text(Using Kruskal’s Algorithm:)`

`text{Edge 1: 1  (minimum weight)}`

`text(Edge 2: 2)`

`text{Edge 3: 4  (edge weight 3 creates a circuit and is ignored)}`

`text(Edge 4: 5   etc…)`
 

`:.\ text(Minimum spanning tree is:)`

 
`rArr D`

Filed Under: Minimum Spanning Trees, Minimum Spanning Trees, Spanning Trees (Std2-2027) Tagged With: Band 4, smc-1138-50-Unknown Edge, smc-6320-50-Unknown Edge, smc-914-50-Unknown Edge

Copyright © 2014–2025 SmarterEd.com.au · Log in