SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Graphs, SPEC2 2021 VCAA 1 MC

Let  `f(x) = 1/(sec(3x) + 3/2)`.

The number of asymptotes that the graph of `f` has in the interval  `[-pi/6, pi]`  is

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6
Show Answers Only

`B`

Show Worked Solution

`text{Graph (by CAS)}:`

`y = 1/(sec(3x) + 3/2)`

`text(By inspection,) \ \ x ∈ [-pi/6, pi]`

`text(3 vertical asymptotes)`

`text(0 horizontal asymptotes)`

`=>\ B`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 4, smc-1150-60-Other

Graphs, SPEC2 2019 VCAA 3 MC

The implied domain of the function with rule  `f(x) = 1 - sec(x + pi/4)`  is

  1. `R`
  2. `[0,2]`
  3. `R\ text(\)\ {((4n - 1)pi)/4}, n ∈ ZZ`
  4. `R\ text(\)\ {((4n + 1)pi)/4}, n ∈ ZZ`
  5. `R\ text(\)\ {((2n - 1)pi)/4}, n ∈ ZZ`
Show Answers Only

`D`

Show Worked Solution

`y = sec (x)=1/cos(x)\ \ text(has asymptotes when)`

`x = −pi/2, pi/2, (3pi)/2, …`

`=> y = sec (x + pi/4)\ \ text(has asymptotes at when)`

`x = (−3pi)/4, pi/4, (5pi)/4, …`

`:.\ text(Domain:)\ R\ text(\)\ {((4n + 1)pi)/4}, n ∈ ZZ`

`=>D`

Filed Under: Trigonometry (SM) Tagged With: Band 4, smc-1150-60-Other

Trigonometry, SPEC1 2011 VCAA 8

Find the coordinates of the points of intersection of the graph of the relation

`y = text(cosec)^2 ((pi x)/6)`  with the line  `y = 4/3`, for  `0 < x < 12.`  (3 marks)

Show Answers Only

`(2, 4/3),(4, 4/3),(8, 4/3), (10, 4/3)`

Show Worked Solution

`text(Intersection occurs when:)`

♦ Mean mark 46%.

`text(cosec)^2((pix)/6)` `=4/3`
`text(cosec)((pix)/6)` `= ±2/sqrt3`
`sin((pix)/6)` `= ±sqrt3/2`

 
`text(Given:)\ \ 0 < x < 12 \ \ =>\ \ 0 < (pix)/6 < 2pi`
 

`(pix)/6` `= pi/3, pi – pi/3, pi + pi/3, 2pi – pi/3`
  `= pi/3, (2pi)/3, (4pi)/3,(5pi)/3`
`x` `= 2, 4, 8, 10`

  
`=> y = 4/3\ text(for each)`

`:.\ text(Intersection at:)\ \ (2, 4/3),(4, 4/3),(8, 4/3), (10, 4/3)`

Filed Under: Trigonometry (SM) Tagged With: Band 5, smc-1150-60-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in