Let `f(x) = 1/(sec(3x) + 3/2)`.
The number of asymptotes that the graph of `f` has in the interval `[-pi/6, pi]` is
- 2
- 3
- 4
- 5
- 6
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f(x) = 1/(sec(3x) + 3/2)`.
The number of asymptotes that the graph of `f` has in the interval `[-pi/6, pi]` is
`B`
`text{Graph (by CAS)}:`
`y = 1/(sec(3x) + 3/2)`
`text(By inspection,) \ \ x ∈ [-pi/6, pi]`
`text(3 vertical asymptotes)`
`text(0 horizontal asymptotes)`
`=>\ B`
The implied domain of the function with rule `f(x) = 1 - sec(x + pi/4)` is
`D`
`y = sec (x)=1/cos(x)\ \ text(has asymptotes when)`
`x = −pi/2, pi/2, (3pi)/2, …`
`=> y = sec (x + pi/4)\ \ text(has asymptotes at when)`
`x = (−3pi)/4, pi/4, (5pi)/4, …`
`:.\ text(Domain:)\ R\ text(\)\ {((4n + 1)pi)/4}, n ∈ ZZ`
`=>D`
Find the coordinates of the points of intersection of the graph of the relation
`y = text(cosec)^2 ((pi x)/6)` with the line `y = 4/3`, for `0 < x < 12.` (3 marks)
`(2, 4/3),(4, 4/3),(8, 4/3), (10, 4/3)`
`text(Intersection occurs when:)`
`text(cosec)^2((pix)/6)` | `=4/3` |
`text(cosec)((pix)/6)` | `= ±2/sqrt3` |
`sin((pix)/6)` | `= ±sqrt3/2` |
`text(Given:)\ \ 0 < x < 12 \ \ =>\ \ 0 < (pix)/6 < 2pi`
`(pix)/6` | `= pi/3, pi – pi/3, pi + pi/3, 2pi – pi/3` |
`= pi/3, (2pi)/3, (4pi)/3,(5pi)/3` | |
`x` | `= 2, 4, 8, 10` |
`=> y = 4/3\ text(for each)`
`:.\ text(Intersection at:)\ \ (2, 4/3),(4, 4/3),(8, 4/3), (10, 4/3)`