SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, SPEC2 2023 VCAA 5

The points with coordinates \(A(1,1,2), B(1,2,3)\) and \(C(3,2,4)\) all lie in a plane \(\Pi\).

  1. Find the vectors \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\), and hence show that the area of triangle \(A B C\) is 1.5 square units.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the shortest distance from point \(B\) to the line segment \(A C\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

A second plane, \(\psi\), has the Cartesian equation  \(2 x-2 y-z=-18\).

  1. At what acute angle does the line given by \(\underset{\sim}{ r }(t)=3 \underset{\sim}{ i }+2 \underset{\sim}{ j }+4 \underset{\sim}{ k }+t(\underset{\sim}{ i }-2 \underset{\sim}{ j }+2\underset{\sim}{ k }), t \in R\), intersect the plane \(\psi\) ? Give your answer in degrees correct to the nearest degree.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

A line \(L\) passes through the origin and is normal to the plane \(\psi\). The line \(L\) intersects \(\psi\) at a point \(D\).

  1. Write down an equation of the line \(L\) in parametric form.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the shortest distance from the origin to the plane \(\psi\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the coordinates of point \(D\).  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.     \(\overrightarrow{A B}  =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
  \(\overrightarrow{A C}  =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)

\(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\)

b.    \(\text {Shortest distance }=1 \text { unit }\)

c.     \(26^{\circ}\)

d.    \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\)

\(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\)

e.    \(\text {Shortest distance }=6\)

f.    \(D(-4,4,2)\)

Show Worked Solution

a.     \(\overrightarrow{A B}  =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
  \(\overrightarrow{A C}  =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)

\(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\)

 
b.   
\(\text {In } \triangle ABC \text {, shortest distance of } B \text { to } A C\ \text {is the} \perp \text {distance }\)

\(|\overrightarrow{A C}|= \displaystyle{\sqrt{2^2+1^2+2^2}}=3\)

\(\dfrac{3}{2}=\dfrac{1}{2}\ |\overrightarrow{A C}| \times h \ \Rightarrow \ h=1\)

\(\therefore \text { Shortest distance }=1 \text { unit }\)
 

♦♦ Mean mark (b) 35%.

c.    \(\text {Vector} \perp \text {to plane}\ \psi\  \text {is}\ \ \underset{\sim}{n}=2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k}\)

\(\text{Parallel line to}\ \underset{\sim}{r}(t) \ \text{is}\ \ \underset{\sim}{m}=\underset{\sim}{i}-2 \underset{\sim}{j}+2\underset{\sim}{k}\)

\(\text{Find angle } \alpha \text{ between }\underset{\sim}{n} \text{ and } \underset{\sim}{m},\)

\(\text{Solve for } \alpha:\)

\((2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k})(\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{2 k})=3 \times 3 \times \cos \, \alpha\)

\(\Rightarrow \alpha=64^{\circ} \text { (nearest degree) }\)
 

\(\text{Find angle } \theta \text{ between } \underset{\sim}{m} \text{ and plane } \psi :\)

\(\theta=90-64=26^{\circ}\)
 

d.    \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\)

\(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\)
 

♦ Mean mark (d) 52%.

e.    \(|\overrightarrow{OD}|=\text{shortest distance from } O \text{ to plane } \psi\).

\(\Rightarrow D \text{ is on } L \text{ and } \psi\)

\(\text{Solve for } t: \  2(2 t)-2(-2 t)-(t)=-18\)

\(\Rightarrow t=-2\)

\(|\overrightarrow{OD}|=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{k}\)

\(\text {Shortest distance }=\displaystyle{\sqrt{(-4)^2+4^2+2^2}}=6\)
 

f.    \(\overrightarrow{OD}=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{i}\)

\(D(-4,4,2)\)

♦ Mean mark (f) 41%.

Filed Under: Basic Concepts and Calculations, Vector Lines, Planes and Geometry Tagged With: Band 4, Band 5, smc-1176-20-Angle between vectors, smc-1176-45-Vector planes, smc-1177-40-Triangles, smc-1177-50-2D problems

Vectors, SPEC2 2023 VCAA 18 MC

What value of \(k\), where \(k \in R\), will make the following planes perpendicular?

\(\Pi_1: \ 2 x-k y+3 z=1\)

\(\Pi_2: \ 2 k x+3 y-2 z=4\)

  1. 2
  2. 4
  3. 6
  4. 8
  5. 10
Show Answers Only

\(C\)

Show Worked Solution

\(\underset{\sim}{p_1} = 2\underset{\sim}{i}-k\underset{\sim}{j}+3\underset{\sim}{k}\)

\(\underset{\sim}{p_2} = 2k\underset{\sim}{i}+3\underset{\sim}{j}-2\underset{\sim}{k}\)

\(\text{Solve}\ \ \underset{\sim}{p_1} \cdot \underset{\sim}{p_2}=0\ \ \text{for}\ k\ \text{(by calc)}: \)

\(4k-3k-6=0\ \ \Rightarrow \ k=6\)

\(\Rightarrow C\)

Filed Under: Basic Concepts and Calculations Tagged With: smc-1176-30-Perpendicular vectors, smc-1176-45-Vector planes

Vectors, SPEC1 2023 VCAA 9

A plane contains the points \( A(1,3,-2), B(-1,-2,4)\) and \( C(a,-1,5)\), where \(a\) is a real constant. The plane has a \(y\)-axis intercept of 2 at the point \(D\).

  1. Write down the coordinates of point \(D\).   (1 mark)

--- 1 WORK AREA LINES (style=lined) ---

  1. Show that \(\overrightarrow{A B}\) and \(\overrightarrow{A D}\) are \(-2 \underset{\sim}{\text{i}}-5 \underset{\sim}{\text{j}}+6 \underset{\sim}{\text{k}}\)  and  \(-\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}+2 \underset{\sim}{\text{k}}\), respectively.   (1 mark)

--- 4 WORK AREA LINES (style=lined) ---

  1. Hence find the equation of the plane in Cartesian form.  (2 marks)

--- 7 WORK AREA LINES (style=lined) ---

  1.  Find \(a\).   (1 mark)

--- 3 WORK AREA LINES (style=lined) ---

  1.  \(\overline{A B}\) and \(\overline{A D}\) are adjacent sides of a parallelogram. Find the area of this parallelogram.   (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(D(0,2,0)\)

b.    \(\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-5 \\
6
\end{array}\right)=-2 \underset{\sim}{\text{i}}-5\underset{\sim}{\text{j}}+6 \underset{\sim}{\text{k}}\)

\(\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{c}0 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=-\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}+2\underset{\sim}{\text{k}}\)

c.    \(4 x+2 y+3 z =4\)

d.    \(a=-\dfrac{9}{4}\)

e.    \(A=\sqrt{29}\)

Show Worked Solution

a.    \(D(0,2,0)\)

 
b.   
\(\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-5 \\
6
\end{array}\right)=-2 \underset{\sim}{\text{i}}-5\underset{\sim}{\text{j}}+6 \underset{\sim}{\text{k}}\)

\(\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{c}0 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=-\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}+2\underset{\sim}{\text{k}}\)

 
c.
    \(\overrightarrow{A B} \times \overrightarrow{A D}=\left|\begin{array}{ccc}
\underset{\sim}{\text{i}} & \underset{\sim}{\text{j}} & \underset{\sim}{\text{k}} \\ -2 & -5 & 6 \\ -1 & -1 & 2\end{array}\right|\)

\(\ \quad \quad \quad \quad \   \begin{aligned} & =(-10+6)\underset{\sim}{\text{i}}-(-4+6)\underset{\sim}{\text{j}}+(2-5) \underset{\sim}{\text{k}} \\ & =-4 \underset{\sim}{i}-2 \underset{\sim}{j}-3 \underset{\sim}{k}\end{aligned}\)

\(\text{Plane:}\ \ -4 x-2 y-3 z=k\)

\(\text{Substitute}\  D(0,2,0)\  \text{into equation}\ \ \Rightarrow \ \text{k}=-4\)

\begin{aligned}
\therefore-4 x-2 y-3 z & =-4 \\
4 x+2 y+3 z & =4
\end{aligned}

 
d.
    \(\text{Find}\ a\ \Rightarrow \ \text{substitute}\ (a, 1,-5)\ \text{into plane equation:}\)

\begin{aligned}
-4 & =-4a+2-15 \\
4 a & =-9 \\
a & =-\dfrac{9}{4}
\end{aligned}

e.     \(\text{Area}\) \(=|\overrightarrow{A B} \times \overrightarrow{A D}|\)
    \(=|-4\underset{\sim}{i}-2\underset{\sim}{j}-3\underset{\sim}{k}|\)
    \(=\sqrt{16+4+9} \)
    \(=\sqrt{29}\)

Filed Under: Basic Concepts and Calculations, Vector Lines, Planes and Geometry Tagged With: Band 4, Band 5, smc-1176-45-Vector planes, smc-1176-55-Cross product, smc-1177-30-Quadrilaterals, smc-1177-50-2D problems

Copyright © 2014–2025 SmarterEd.com.au · Log in