Consider the vectors \(\underset{\sim}{\text{a}}=2 \underset{\sim}{\text{i}}-3 \underset{\sim}{\text{j}}+p \underset{\sim}{\text{k}}, \ \underset{\sim}{\text{b}}=\underset{\sim}{\text{i}}+2 \underset{\sim}{\text{j}}-q \underset{\sim}{\text{k}}\) and \(\underset{\sim}{\text{c}}=-3 \underset{\sim}{\text{i}}+2 \underset{\sim}{\text{j}}+5 \underset{\sim}{\text{k}}\), where \(p\) and \(q\) are real numbers.
If these vectors are linearly dependent, then
- \(8p=5q-35\)
- \(5p=8q-35\)
- \(8p=-5q-35\)
- \(8p=5q+35\)
- \(5p=8q+35\)