Consider the vectors \(\underset{\sim}{\text{a}}=\alpha \underset{\sim}{\text{i}}+\underset{\sim}{\text{j}}-\underset{\sim}{\text{k}}, \ \underset{\sim}{\text{b}}=3 \underset{\sim}{\text{i}}+\beta \underset{\sim}{\text{j}}+4 \underset{\sim}{\text{k}}\) and \(\underset{\sim}{\text{c}}=2 \underset{\sim}{\text{i}}-7 \underset{\sim}{\text{j}}+\gamma \underset{\sim}{\text{k}}\), where \(\alpha, \beta, \gamma \in R\). If \(\underset{\sim}{\text{a}} \times \underset{\sim}{\text{b}}=\underset{\sim}{\text{c}}\), then
- \(\alpha=-2, \ \beta=-1, \ \gamma=-5\)
- \(\alpha=-1, \ \beta=2, \ \gamma=-1\)
- \(\alpha=1, \ \beta=-2, \ \gamma=-5\)
- \(\alpha=-2, \ \beta=-1, \ \gamma=-1\)
- \(\alpha=1, \ \beta=-2, \ \gamma=5\)