Consider the following parallel lines.
\(L_1:\ {\underset{\sim}{r}}_1=\underset{\sim}{ i }+3 \underset{\sim}{ j }+\underset{\sim}{k}+s(\underset{\sim}{ i }+\underset{\sim}{ j }+\underset{\sim}{ k })\) and \(L_2:\ {\underset{\sim}{r}}_2=-2 \underset{\sim}{ i }+\underset{\sim}{ j }+3 \underset{\sim}{k}+t(\underset{\sim}{ i }+\underset{\sim}{ j }+\underset{\sim}{k })\) where \(s, t \in R\).
The shortest distance between \(L_1\) and \(L_2\) is
- \(3\)
- \(\sqrt{14}\)
- \(\sqrt{17}\)
- \(14\)