SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, SPEC2 2024 VCAA 17 MC

Consider the following parallel lines.

\(L_1:\ {\underset{\sim}{r}}_1=\underset{\sim}{ i }+3 \underset{\sim}{ j }+\underset{\sim}{k}+s(\underset{\sim}{ i }+\underset{\sim}{ j }+\underset{\sim}{ k })\)  and  \(L_2:\ {\underset{\sim}{r}}_2=-2 \underset{\sim}{ i }+\underset{\sim}{ j }+3 \underset{\sim}{k}+t(\underset{\sim}{ i }+\underset{\sim}{ j }+\underset{\sim}{k })\) where \(s, t \in R\).

The shortest distance between \(L_1\) and \(L_2\) is

  1. \(3\)
  2. \(\sqrt{14}\)
  3. \(\sqrt{17}\)
  4. \(14\)
Show Answers Only

\(B\)

Show Worked Solution

\({\underset{\sim}{r}}_1=\underset{\sim}{a}+s \underset{\sim}{d}, \quad{\underset{\sim}{r}}_2=\underset{\sim}{b}+t \underset{\sim}{d}\)

\(\underset{\sim}{a}-\underset{\sim}{b}=\left(\begin{array}{c}1 \\ 3 \\ 1\end{array}\right)-\left(\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right)=\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right)\)

\(d=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \Rightarrow \abs{d}=\sqrt{3}\)

Mean mark 58%.
\(\text{Shortest distance}\) \(=\abs{\hat{\underset{\sim}{d}} \times \left(\underset{\sim}{a}-\underset{\sim}{b}\right)}\)
  \(=\abs{\dfrac{1}{\sqrt{3}}\left(\underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k}\right) \times \left(3 \underset{\sim}{i}+2\underset{\sim}{j}-2 \underset{\sim}{k}\right)}\)
  \(=\abs{\dfrac{1}{\sqrt{3}}\left(-4\underset{\sim}{i}+5\underset{\sim}{j}-\underset{\sim}{k}\right)}\)
  \(=\sqrt{14}\)

\(\Rightarrow B\)

Filed Under: Vector Lines, Planes and Geometry Tagged With: Band 4, smc-1177-70-Distance b/t lines

Vectors, SPEC1 2024 VCAA 10

Let the lines \(l_1\) and \(l_2\) be defined by

\(l_1:{\underset{\sim}{r}}_1(\lambda)=\underset{\sim}{i}+m \underset{\sim}{k}+\lambda(\underset{\sim}{i}+2\underset{\sim}{j}+\underset{\sim}{k})\)  and  \(l_2:{\underset{\sim}{r}}_2(\mu)=2 \underset{\sim}{ i }-\underset{\sim}{ k }+\mu(-\underset{\sim}{ i }+3 \underset{\sim}{ j }+2 \underset{\sim}{ k })\),  where  \(m \in R \backslash\left\{-\dfrac{4}{5}\right\}\) and \(\lambda, \mu \in R\).

If the shortest distance between the two skew lines \(l_1\) and \(l_2\) is \(\dfrac{14}{\sqrt{35}}\), find the values of \(m\).   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(m=\dfrac{-18}{5}\ \text{or}\ 2\)

Show Worked Solution

\begin{array}{lll}
\text{Let} \ & {\underset{\sim}{a}}_1=\underset{\sim}{i}+m\underset{\sim}{k}, &{\underset{\sim}{d}}_1=\underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k}\\
\quad &{\underset{\sim}{a}}_2=2\underset{\sim}{i}-\underset{\sim}{k}, & {\underset{\sim}{d}}_2=\underset{\sim}{i}+3\underset{\sim}{j}+2 \underset{\sim}{k}\\
\end{array}

♦♦ Mean mark 27%.

\(\underset{\sim}{n}={\underset{\sim}{d}}_1 \times{\underset{\sim}{d}}_2=\left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 1 & 2 & 1 \\ -1 & 3 & 2\end{array}\right|=\underset{\sim}{i}+3 \underset{\sim}{j}+5 \underset{\sim}{k}\)
 

\(\hat{\underset{\sim}{n}} = \dfrac{\underset{\sim}{i}+3 \underset{\sim}{j}+5 \underset{\sim}{k}}{\sqrt{1+9+25}}=\dfrac{1}{\sqrt{35}}\left(\underset{\sim}{i}+3\underset{\sim}{j}+5\underset{\sim}{k}\right)\)
 

\(\text{Distance}\) \(=\abs{\left({\underset{\sim}{a}}_2-{\underset{\sim}{a}}_1 \right) \cdot  \hat{\underset{\sim}{n}}}\)
  \(=\abs{\left( \underset{\sim}{i}-\left(1+m\right)\underset{\sim}{k}\right) \cdot \dfrac{1}{\sqrt{3}} \left(\underset{\sim}{i}+3 \underset{\sim}{j}+5 \underset{\sim}{k}\right) }\)
  \(=\abs{\dfrac{1+0-5-5 m}{\sqrt{3}}}\)
  \(=\abs{\dfrac{-4-5 m}{\sqrt{35}}}\)

 
\(\text{Find \(m\) such that:}\)

\(\abs{\dfrac{-4-5 m}{\sqrt{35}}}\) \(=\dfrac{14}{\sqrt{35}}\)    
\(-4-5 m\) \(=14\) \(\qquad 4+5 m\) \(=14\)
\(m\) \( =\dfrac{-18}{5}\ \ \ \ \ \  \text{or}\) \(m\) \(=2\)

Filed Under: Vector Lines, Planes and Geometry Tagged With: Band 5, smc-1177-60-3D problems, smc-1177-70-Distance b/t lines

Copyright © 2014–2025 SmarterEd.com.au · Log in