SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, SPEC2-NHT 2019 VCAA 14 MC

The position vector  `underset~r(t)`  of a mass of 3 kg after `t` seconds, where  `t >= 0`, is given by  `underset~r(t) = 10tunderset~i + (16t^2 - 4/3t^3)underset~j`.

The force, in newtons, acting on the mass when  `t = 2`  seconds is

  1.  `16underset~j`
  2.  `32underset~j`
  3.  `48underset~j`
  4.  `30underset~i + 144underset~j`
  5.  `16`
Show Answers Only

`C`

Show Worked Solution

`underset~r(t) = 10tunderset~i + (16t^2 – 4/3t^3)underset~j`

`underset~v(t) = 10underset~i + (32t – 4t^2)underset~j`

`underset~a(t) = (32 – 8t)underset~j`

`text(When)\ t = 2,`

`underset~F` `= m underset~a`
  `= 3(32 – 16)underset~j`
  `= 48underset~j`

`=>\ C`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, smc-1179-10-Force magnitude

Vectors, SPEC2 2011 VCAA 11 MC

Consider the three forces

`underset~F_1 = −sqrt3underset~j`,  `underset~F_2 = underset~i + sqrt3underset~j`  and  `underset~F_3 = −1/2underset~i + sqrt3/2underset~j`.

The magnitude of the sum of these three forces is equal to

  1. the magnitude of `(underset~F_3 - underset~F_1)`
  2. the magnitude of `(underset~F_2 - underset~F_1)`
  3. the magnitude of `underset~F_1`
  4. the magnitude of `underset~F_2`
  5. the magnitude of `underset~F_3`
Show Answers Only

`E`

Show Worked Solution
`underset~(F_1) + underset~(F_2) + underset~(F_3)` `= (1 – 1/2)underset~i + (−sqrt3 + sqrt3 + sqrt3/2)underset~j`
  `= 1/2 underset~i + sqrt3/2underset~j`
`|underset~(F_1) + underset~(F_2) + underset~(F_3)|` `= sqrt((1/2)^2 + (sqrt3/2)^2)`
  `= |underset~(F_3)|`

`=> E`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, smc-1179-10-Force magnitude

Vectors, SPEC2 2016 VCAA 13 MC

A particle of mass 5 kg is subject to forces  `12 underset ~i`  newtons and  `9 underset ~j`  newtons.

If no other forces act on the particle, the magnitude of the particle’s acceleration, in ms¯², is

  1. `3`
  2. `2.4 underset ~i + 1.8 underset ~j`
  3. `4.2`
  4. `9`
  5. `60 underset ~i + 45 underset ~j`
Show Answers Only

`A`

Show Worked Solution
`underset ~F` `= 12 underset ~i + 9 underset ~j`
`5 underset ~a` `= 12 underset ~i + 9 underset ~j`
`underset ~a` `= 12/5 underset ~i + 9/5 underset ~j`
   
`|underset ~a|` `= sqrt(144/25 + 81/25)`
  `= 3`

 
`=>  A`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, smc-1179-10-Force magnitude

Vectors, SPEC1 2017 VCAA 9

A particle of mass 2 kg with initial velocity  `3underset~i + 2underset~j`  ms−1 experiences a constant force for 10 seconds.

The particle's velocity at the end of the 10-second period  `43underset~i-18underset~j`  ms−1 .

  1. Find the magnitude of the constant force in newtons.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the displacement of the particle from its initial position after 10 seconds.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4sqrt5 N`
  2. `230underset~i-80underset~j`
Show Worked Solution
a.    `u_i` `= 3` `v_i` `= 43`
  `u_j` `= 2` `v_j` `= −18`
`43` `= 3 + 10a`
`40` `= 10a`
`a_i` `= 4`

♦ Mean mark (a) 38%.

`−18` `= 2 + 10a_j`
`−20` `= 10a_j`
`a_j` `= −2`

 

`underset~a` `= 4underset~i-2underset~j`
`|underset~a|` `= sqrt(4^2 + (−2)^2)`
  `= sqrt(20)`
  `= 2sqrt5`

 

`:.|F|` `= 2 xx 2sqrt5`
  `= 4sqrt5 N`

 

b.  `underset~a = 4underset~i-2underset~j`

`underset~v` `= int4underset~i-2underset~j\ dt`
  `= (4t + C_i)underset~i + (−2t + C_j)underset~j\ \ \ (C_i, C_j ∈ R)`

 
`underset~v(0) = C_i underset~i + C_j underset~j = 3underset~i + 2underset~j`

`=> C_i = 3, C_j = 2`
 

`underset~v(t) = (4t + 3)underset~i + (2-2t)underset~j`

`underset~x(t)` `= int(4t + 3)underset~i + (2-2t)underset~j\ dt`
  `= (((4t^2)/2 +3t) + b_i)underset~i + ((2t-(2t^2)/2) + b_j)underset~j \ \ \ (b_i, b_j ∈ R)`
  `= (2t^2 + 3t + b_i)underset~i + (2t-t^2 + b_j)underset~j`

 
`underset~x(0) = b_iunderset~i + b_junderset~j`

`underset~0 => b_i = b_j = 0`

`underset~x(t) = (2t^2 + 3t)underset~i + (2t-t^2)underset~j`

`underset~x(10)` `= (2(10)^2 + 3(10))underset~i + (2(10)-10^2)underset~j`
  `= 230underset~i-80underset~j`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, Band 5, smc-1179-10-Force magnitude, smc-1179-50-Motion and integration

Copyright © 2014–2025 SmarterEd.com.au · Log in