SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, SPEC2 2024 VCAA 15 MC

The position of a moving body is given by  \(\underset{\sim}{ r }(t)=\sin (t) \underset{\sim}{ i }+\cos (2 t) \underset{\sim}{ j }\), where \(t\) is measured in seconds, for  \(t \geq 0\).

The motion of the body can be described as moving along a parabolic path given by

  1. \(y=1-2 x^2\), starting at \((0,1)\), reversing direction at \((1,-1)\) and then again at \((-1,-1)\), then returning to \((0,1)\) after \(2 \pi\) seconds.
  2. \(y=1-x^2\), starting at \((1,0)\), reversing direction at \((-1,0)\), then returning to \((1,0)\) after \(2 \pi\) seconds.
  3. \(y=1-2 x^2\), starting at \((0,1)\), reversing direction at \((1,-1)\) and then again at \((-1,-1)\), then returning to \((0,1)\) after \(\pi\) seconds.
  4. \(y=1-x^2\), starting at \((1,0)\), reversing direction at \((-1,0)\), then returning to \((1,0)\) after \(\pi\) seconds.
Show Answers Only

\(A\)

Show Worked Solution
\(x\) \(=\sin (t) \Rightarrow \text{Period}=2 \pi\)  
\(y\) \(=\cos (2t) \Rightarrow \text{Period}=\pi\)  
  \(=1-2 \sin ^2(t)\)  
  \(=1-2 x^2 \quad \text{(Eliminate B and D)}\)  

 
\(\text {Motion starts at \((0,1)\) when  \(t=0\).}\)

\(\text{At  \(t=\dfrac{\pi}{2}\), position \((1,-1)\)}\)

\(\text{At  \(t=\dfrac{3\pi}{2}\), position \((-1,-1)\)}\)

\(\text{At  \(t=2 \pi\), returns to \((0,1)\) after a full period.}\)

\(\Rightarrow A\)

♦♦ Mean mark 36%.

Filed Under: Forces and Motion Along a Curve Tagged With: Band 5, smc-1179-50-Motion and integration

Vectors, SPEC2 2020 VCAA 15 MC

Two forces, `underset~F_(text(A)) = 4 underset~i - 2 underset~j`  and  `underset~F_(text(B)) = 2 underset~i - 5 underset~j`, act on a particle of mass 3 kg. The particle is initially at rest at position  `underset~i + underset~j`. All force components are measured in newtons and displacements are measured in metres.

The cartesian equation of the path of the particle is

  1. `y = x/2`
  2. `y = x/2 - 1/2`
  3. `y = ((x + 1)^2)/2 + 1`
  4. `y = ((x - 1)^2)/1 + 1`
  5. `y = x/2 + 1/2`
Show Answers Only

`E`

Show Worked Solution

`text(Net Force)\ (underset~F) = 4underset~i – 2underset~j +  2underset~i + 5underset~j = 6underset~i + 3underset~j`

`underset~a = underset~F/m = 2underset~i + underset~j`

♦ Mean mark 38%.

`underset~v = int_0^t 2underset~i + underset~j\ dt = 2tunderset~i + tunderset~j`

`underset~r` `= int_0^t 2tunderset~i + tunderset~j\ dt + (underset~i + underset~j)`
  `= t^2 underset~i + (t^2)/2 underset~j + underset~i + underset~j`
  `= (t^2 + 1)underset~i + ((t^2)/2 + 1)underset~j`

 
`x = t^2 + 1 \ => \ t^2 = x – 1`

`y` `= (t^2)/2 + 1`
  `= ((x – 1))/2 + 1`
  `= x/2 + 1/2`

 
`=>E`

Filed Under: Forces and Motion Along a Curve, Position Vectors as a Function of Time Tagged With: Band 5, smc-1178-10-Find Cartesian equation, smc-1179-50-Motion and integration

Vectors, SPEC2 2019 VCAA 15 MC

A particle is moving along the `x`-axis with velocity  `underset~v = u underset~i`, where  `u`  is a real constant.

At time  `t = 0`, a force acts on the particle, causing it to accelerate with acceleration  `underset~a = alpha underset~j`, where  `alpha`  is a negative real constant.

Which one of the following statements correctly describes the motion of the particle for  `t > 0`?

  1. The particle show down, stops momentarily and then begins to move in the opposite direction to its original motion.
  2. The particle continues to travel along the `x`-axis with decreasing speed.
  3. The particle travels parallel to the `y`-axis.
  4. The particle moves along a circular arc.
  5. The particle moves along a parabola.
Show Answers Only

`E`

Show Worked Solution

`underset~a = alpha underset~j`

`text(Once force acts on particle:)`

`underset~v = u underset~i + alphat underset~j,\ \ \ (text(let)\ c_1 = 0)`

`underset~r = utunderset~i + alpha/2 t^2 underset~j,\ \ \ (text(let)\ c_2 = 0)`

`underset~r\ \ text(describes a parabola.)`

`=>E`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 5, smc-1179-50-Motion and integration

Vectors, SPEC2 2014 VCAA 17 MC

The acceleration vector of a particle that starts from rest is given by

`underset ~a(t) = −4 sin(2t) underset ~i + 20 cos (2t) underset ~j - 20 e^(−2t) underset ~k`, where `t >= 0`.

The velocity vector of the particle, `underset ~v(t)`, is given by

  1. `−8 cos(2t) underset ~i - 40 sin(2t) underset ~j + 40e^(−2t) underset ~k`
  2. `2 cos(2t) underset ~i + 10 sin(2t) underset ~j + 10e^(−2t) underset ~k`
  3. `(8 - 8 cos(2t)) underset ~i - 40 sin(2t) underset ~j + (40e^(−2t) - 40) underset ~k`
  4. `(2 cos(2t) - 2) underset ~i + 10 sin(2t) underset ~j + (10e^(−2t) - 10) underset ~k`
  5. `(4 cos(2t) - 4) underset ~i + 20 sin(2t) underset ~j + (20 - 20e^(−2t)) underset ~k`
Show Answers Only

`D`

Show Worked Solution
`underset ~ dot v(t)` `= underset ~a(t)`
`underset ~v(t)` `= int underset ~a (t)\ dt`
  `= (2 cos (2t) + c_0) underset ~i + (10 sin (2t) + c_1) underset ~j + (10e^(-2t) + c_2) underset ~k`

 
`text(S)text(ince)\ \ v=0\ \ text(when)\ \ t=0:`

`0` `= (2 cos (0) + c_0) underset ~i + (10 sin (0) + c_1) underset ~j + (10e^0 + c_2) underset ~k`
`0` `= (2 + c_0) underset ~i + c_1 underset ~j + (10 + c_2) underset ~k `

 
`=> c_0 = -2, \ \  c_1 = 0, \ \  c_2 = -10`
 

`:. underset ~v(t) = (2 cos (2t) – 2) underset ~i + 10 sin(2t) underset ~j + (10e^(-2t) – 10) underset ~k`

`=> D`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, smc-1179-50-Motion and integration

Vectors, SPEC1 2017 VCAA 9

A particle of mass 2 kg with initial velocity  `3underset~i + 2underset~j`  ms−1 experiences a constant force for 10 seconds.

The particle's velocity at the end of the 10-second period  `43underset~i-18underset~j`  ms−1 .

  1. Find the magnitude of the constant force in newtons.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the displacement of the particle from its initial position after 10 seconds.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4sqrt5 N`
  2. `230underset~i-80underset~j`
Show Worked Solution
a.    `u_i` `= 3` `v_i` `= 43`
  `u_j` `= 2` `v_j` `= −18`
`43` `= 3 + 10a`
`40` `= 10a`
`a_i` `= 4`

♦ Mean mark (a) 38%.

`−18` `= 2 + 10a_j`
`−20` `= 10a_j`
`a_j` `= −2`

 

`underset~a` `= 4underset~i-2underset~j`
`|underset~a|` `= sqrt(4^2 + (−2)^2)`
  `= sqrt(20)`
  `= 2sqrt5`

 

`:.|F|` `= 2 xx 2sqrt5`
  `= 4sqrt5 N`

 

b.  `underset~a = 4underset~i-2underset~j`

`underset~v` `= int4underset~i-2underset~j\ dt`
  `= (4t + C_i)underset~i + (−2t + C_j)underset~j\ \ \ (C_i, C_j ∈ R)`

 
`underset~v(0) = C_i underset~i + C_j underset~j = 3underset~i + 2underset~j`

`=> C_i = 3, C_j = 2`
 

`underset~v(t) = (4t + 3)underset~i + (2-2t)underset~j`

`underset~x(t)` `= int(4t + 3)underset~i + (2-2t)underset~j\ dt`
  `= (((4t^2)/2 +3t) + b_i)underset~i + ((2t-(2t^2)/2) + b_j)underset~j \ \ \ (b_i, b_j ∈ R)`
  `= (2t^2 + 3t + b_i)underset~i + (2t-t^2 + b_j)underset~j`

 
`underset~x(0) = b_iunderset~i + b_junderset~j`

`underset~0 => b_i = b_j = 0`

`underset~x(t) = (2t^2 + 3t)underset~i + (2t-t^2)underset~j`

`underset~x(10)` `= (2(10)^2 + 3(10))underset~i + (2(10)-10^2)underset~j`
  `= 230underset~i-80underset~j`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, Band 5, smc-1179-10-Force magnitude, smc-1179-50-Motion and integration

Vectors, SPEC1 2017 VCAA 7

The position vector of a particle moving along a curve at time `t` is given by  `underset~r(t) = cos^3(t)underset~i + sin^3(t)underset~j, \ 0 <= t <= pi/4`.

Find the length of the path that the particle travels along the curve from  `t = 0`  to  `t = pi/4`.  (4 marks)

Show Answers Only

`3/4`

Show Worked Solution

`x(t) = (cos(t))^3 `

♦ Mean mark 50%.

`xprime(t)= −3cos^2(t)sin(t)`

 
`y(t) = (sin(t))^3`

`yprime(t)= 3sin^2(t)cos(t)`

 

`l` `= int_0^(pi/4)sqrt((xprime(t))^2 + (yprime(t))^2)\ dt`
  `= int_0^(pi/4)sqrt(9cos^4(t)sin^2(t) + 9sin^2(t)cos^2(t))\ dt`
  `= int_0^(pi/4)3sqrt(sin^2(t)cos^2(t)(cos^2(t) + sin^2(t)))\ dt`
  `= int_0^(pi/4)3sqrt(sin^2(t)cos^2(t))\ dt`
  `= 3int_0^(pi/4)sin(t)cos(t)\ dt`
  `= 3/2 int_0^(pi/4)(2sin(t)cos(t))\ dt`
  `= 3/2int_0^(pi/4)sin(2t)\ dt`
  `= 3/2[−1/2 cos(2t)]_0^(pi/4)`
  `= −3/4(cos(pi/2) – cos(0))`
  `= 3/4`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 5, smc-1179-50-Motion and integration

Vectors, SPEC1 2018 VCAA 10

The position vector of a particle moving along  a curve at time `t` seconds is given by 

   `underset ~r (t) = t^3/3 underset ~i + (text{arcsin}(t) + t sqrt (1 - t^2)) underset ~j, \ 0 <= t <= 1`,

where distances are measured in metres.

The distance `d` metres that the particle travels along the curve in three-quarters of a second is given by

`d = int_0^(3/4) (at^2 + bt + c)\ dt`

Find `a, b` and `c`, where  `a, b, c in Z`.  (5 marks)

Show Answers Only

`a = -1,\ \ b = 0,\ \ c = 2`

Show Worked Solution
`x` `= t^3/3`
`x′ (t)` `=t^2`

♦♦ Mean mark 26%.

`y` `= sin^(-1)(t) + t(1 – t^2)^(1/2)`
`y′(t)` `= 1/sqrt(1 – t^2) + sqrt(1 – t^2) + t(1/2(-2t)(1 – t^2)^(-1/2))`
  `= 1/sqrt(1 – t^2) + sqrt (1 – t^2) – t^2/sqrt(1 – t^2)`
  `= (1 – t^2)/sqrt (1 – t^2) + sqrt (1 – t^2)`
  `= sqrt(1 – t^2) + sqrt(1 – t^2)`
  `= 2 sqrt (1 – t^2)`

 

`d` `= int_0^(3/4) sqrt(((dx)/(dt))^2 + ((dy)/(dt))^2)\ dt`
  `= int_0^(3/4) sqrt(t^4 + 4(1 – t^2))\ dt`
  `= int_0^(3/4) sqrt(t^4 – 4t^2 + 4)\ dt`
  `= int_0^(3/4) sqrt((t^2 – 2)^2)\ dt`

 
`text(S)text(ince distance travelled along curve is positive,)`

`text(When)\ \ 0 <= t <= 1 => sqrt((t^2 – 2)^2) = 2 – t^2 >= 0`

`d = int_0^(3/4) – t^2 + 0*t + 2\ dt`

`a = -1,\ \ b = 0,\ \ c = 2`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 5, smc-1179-50-Motion and integration

Copyright © 2014–2025 SmarterEd.com.au · Log in