SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2023 VCAA 9 MC

The position of a particle moving in the Cartesian plane, at time \(t\), is given by the parametric equations

\(x(t)=\dfrac{6 t}{t+1}\)  and  \(y(t)=\dfrac{-8}{t^2+4}\), where  \(t \geq 0\).

What is the slope of the tangent to the path of the particle when  \(t=2\) ?

  1. \(-\dfrac{1}{3}\)
  2. \(-\dfrac{1}{4}\)
  3. \(\dfrac{1}{3}\)
  4. \(\dfrac{3}{4}\)
  5. \(\dfrac{4}{3}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{At}\ \ t=2\ \text{(by calc):}\)

\(\dfrac{dx}{dt}=\dfrac{2}{3}, \ \dfrac{dy}{dt}=\dfrac{1}{2} \)

\(\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{dx} = \dfrac{1}{2} \times \dfrac{3}{2} = \dfrac{3}{4} \)

\(\Rightarrow D\)

Filed Under: Motion (SM), Tangents and Curve Sketching Tagged With: Band 5, smc-1159-70-Parametric, smc-1182-10-Find gradient, smc-1182-65-Paramatric functions

Calculus, SPEC1 2023 VCAA 7

The curve defined by the parametric equations

\(x=\dfrac{t^2}{4}-1, \ y=\sqrt{3} t\), where  \(0 \leq t \leq 2 \text {, }\)

is rotated about the \(x\)-axis to form an open hollow surface of revolution.

Find the surface area of the surface of revolution.

Give your answer in the form \(\pi\left(\dfrac{a \sqrt{b}}{c}-d\right)\), where \(a, b, c\) and \(d \in Z^{+}\).   (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\pi\Bigg{(} \dfrac{64\sqrt3}{3}-24\Bigg{)} \)

Show Worked Solution

\(x=\dfrac{t^2}{4}-1 \ \Rightarrow \dfrac{dx}{dt}=\dfrac{t}{2} \)

\(y=\sqrt{3} t \ \Rightarrow \dfrac{dy}{dt} = \sqrt3\)

\(\text{S.A.}\) \[=2\pi \int_0^2 \sqrt3 t \times \sqrt{\Big{(}\dfrac{dx}{dt}\Big{)}^2+\Big{(}\frac{dy}{dt}\Big{)}^2}\ dt\]  
  \[=2\sqrt3 \pi \int_0^2 t\sqrt{\dfrac{t^2}{4}+3}\ dt\]  

 
\(\text{Let}\ \ u=\dfrac{t^2}{4}\ \ \Rightarrow \ \dfrac{du}{dt}=\dfrac{t}{2}\ \ \Rightarrow \ 2\,du=t\,dt\)

\(\text{When}\ \ t=2, u=4; \ t=0, u=3\)

\(\text{S.A.}\) \[=4\sqrt3\pi \times \dfrac{2}{3}\Big{[}u^{\frac{3}{2}}\Big{]}_3^4 \]  
  \(=\dfrac{8\sqrt3 \pi}{3}\big{(}4^{\frac{3}{2}}-3^{\frac{3}{2}}\big{)} \)  
  \(=\dfrac{8\sqrt3 \pi}{3}(8-3\sqrt3) \)  
  \(=\pi\Bigg{(} \dfrac{64\sqrt3}{3}-24\Bigg{)} \)  

Filed Under: Solids of Revolution, Tangents and Curve Sketching Tagged With: Band 5, smc-1180-50-x-axis rotations, smc-1182-65-Paramatric functions

Calculus, SPEC1 2011 VCAA 5

For the curve with parametric equations

`x = 4 sin (t) - 1`

`y = 2 cos (t) + 3`

Find  `(dy)/(dx)`  at the point  `(1, sqrt 3 + 3).`  (3 marks)

Show Answers Only

`– sqrt 3/6`

Show Worked Solution

`(dx)/(dt) = 4cos(t)`

`(dy)/(dt) = −2sin(t)`

`(dy)/(dx)` `= ((dy)/(dt))/((dx)/(dt))`
  `= (-sin t)/(2cos t)`

 
`x = 4 sin (t) – 1\ \ text{(given)}\ \ =>\ \ sin(t)=(x+1)/4`

`y = 2 cos (t) + 3\ \ text{(given)}\ \ =>\ \ 2cos(t)=(y-3)`

`=> dy/dx= (-(x + 1)/4)/(y – 3)`
 

`text(At)\ \ (1, sqrt 3 + 3):`

`:. (dy)/(dx)` `= (-1/2)/(sqrt3+3 -3)`
  `= -1/(2sqrt3)`
  `= – sqrt3/6`

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, smc-1182-10-Find gradient, smc-1182-65-Paramatric functions

Copyright © 2014–2025 SmarterEd.com.au · Log in