Given the complex number `z=e^(i theta)`, show that `w=(z^(2)-1)/(z^(2)+1)` is purely imaginary. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given the complex number `z=e^(i theta)`, show that `w=(z^(2)-1)/(z^(2)+1)` is purely imaginary. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`z=e^(i theta)`
`w` | `=(z^2-1)/(z^2+1)` | |
`=(e^(i2theta)-1)/(e^(i2theta)+1)` | ||
`=(e^(i2theta)-1)/(e^(i2theta)+1) xx (e^(-i2theta)+1)/(e^(-i2theta)+1)` | ||
`=(1+e^(i2theta)-e^(-i2theta)-1)/(1+e^(i2theta)+e^(-i2theta)+1)` | ||
`=(e^(i2theta)-e^(-i2theta))/(2+e^(i2theta)+e^(-i2theta))` | ||
`=(cos(2theta)+isin(2theta)-(cos(-2theta)+isin(-2theta)))/(2+cos(2theta)+isin(2theta)+cos(-2theta)+isin(-2theta))` | ||
`=(cos(2theta)+isin(2theta)-cos(2theta)+isin(2theta))/(2+cos(2theta)+isin(2theta)+cos(2theta)-isin(2theta))` | ||
`=(i2sin(2theta))/(2+2cos(2theta))` | ||
`=i((2sin(2theta))/(2+2cos(2theta)))\ \ text{(purely imaginary)}` |
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i.
\(\text {Let}\ \ z=-\sqrt{3}+i\)
\(\abs{z}=\sqrt{(-\sqrt{3})^2+1^2}=2\)
\(\text{Find}\ \ \arg (z):\)
\(\tan \theta=\dfrac{1}{\sqrt{3}} \Rightarrow \theta=\dfrac{\pi}{6}\)
\(\Rightarrow \arg (z)=\dfrac{5 \pi}{6}\)
\(\therefore z\) | \(=2\left(\dfrac{\cos (5 \pi)}{6}+\dfrac{\sin (5 \pi)}{6} i\right)\) | |
\(=2 e^{\small{\dfrac{5 \pi}{6}} i}\) |
ii. | \((-\sqrt{3}+i)^{10}\) | \(=\left(2 e^{\small{\dfrac{5 \pi}{6}} i}\right)^{10}\) |
\(=2^{10} e^{\small{\dfrac{50 \pi}{6}} i}\) | ||
\(=1024 e^{\small{\dfrac{\pi}{3}} i}\) | ||
\(=1024\left(\cos \left(\dfrac{\pi}{3}\right)+\sin \left(\dfrac{\pi}{3}\right) i\right)\) | ||
\(=1024\left(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} i\right)\) | ||
\(=512+512 \sqrt{3} i\) |
Which of the following is the complex number \(-\sqrt{3}+3 i ?\)?
\(B\)
\(\abs{z}\) | \(=\sqrt{(\sqrt{3})^2+3^2}=2 \sqrt{3}\) |
\(\tan \theta\) | \(=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}}\) |
\(\theta\) | \(=\dfrac{\pi}{6}\) |
\(\arg (z)=\dfrac{\pi}{2}+\dfrac{\pi}{6}=\dfrac{2 \pi}{3}\)
\(\therefore z\) | \(=2 \sqrt{3}\left(\cos \left(\dfrac{2 \pi}{3}\right)+i \sin \left(\dfrac{2 \pi}{3}\right)\right.\) |
\(=2 \sqrt{3} e^{\small{\dfrac{i 2 \pi}{3}}}\) |
\(\Rightarrow B\)
Which of the following is the complex number \(-3-\sqrt{3}i\)?
\(C\)
\(\abs{z}\) | \(=\sqrt{3^2+(\sqrt{3})^2}\) |
\(=\sqrt{12}\) | |
\(=2 \sqrt{3}\) |
\(\tan \theta\) | \(=\dfrac{3}{\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}}=\sqrt{3}\) |
\(\theta\) | \(=\dfrac{\pi}{3}\) |
\(\arg (z)\) | \(=-\left(\dfrac{\pi}{3}+\dfrac{\pi}{2}\right)=-\dfrac{5 \pi}{6}\) |
\(\text {In exponential form:}\)
\(z=2 \sqrt{3} e^{-\small{\dfrac{i5\pi}{6}}}\)
\(\Rightarrow C\)
Express the complex number \(z=-2 \sqrt{2}-2 \sqrt{6} i\) in the exponential form. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(4 \sqrt{2} e^{-i \small{\dfrac{2 \pi}{3}}}\)
\(\abs{z}\) | \(=\sqrt{(2 \sqrt{2})^2+(2 \sqrt{6})^2}\) |
\(=\sqrt{8+24}\) | |
\(=4 \sqrt{2}\) |
\(\tan \theta\) | \(=\dfrac{2 \sqrt{2}}{2 \sqrt{6}}=\dfrac{1}{\sqrt{3}}\) |
\(\theta\) | \(=\dfrac{\pi}{6}\) |
\(\operatorname{Arg}(z)=-\left(\dfrac{\pi}{2}+\dfrac{\pi}{6}\right)=-\dfrac{2 \pi}{3}\)
\(\therefore z\) | \(=4 \sqrt{2} \operatorname{cis}\left(\dfrac{-2 \pi}{3}\right)\) |
\(=4 \sqrt{2} e^{-i \small{\dfrac{2 \pi}{3}}}\) |