SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N1 2025 HSC 11b

The complex numbers \(w\) and \(z\) are given by  \(w=2 e^{\small{\dfrac{i \pi}{6}}}\)  and  \(z=3 e^{\small{\dfrac{i \pi}{6}}}\).  Find the modulus and argument of \(w z\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Modulus = 6,  Argument}\ = \dfrac{\pi}{3} \)

Show Worked Solution

\(w=2 e^{\small{\dfrac{i \pi}{6}}}, \ \ z=3 e^{\small{\dfrac{i \pi}{6}}}\)

\(wz=2 e^{\small{\dfrac{i \pi}{6}}} \times 3 e^{\small{\dfrac{i \pi}{6}}} = 6 e^{\small{\dfrac{i \pi}{3}}}\)

\(\text{Modulus = 6,  Argument}\ = \dfrac{\pi}{3} \)

Filed Under: Exponential Form Tagged With: Band 3, smc-1191-35-Exponential - Mod/Arg

Complex Numbers, EXT2 N1 EQ-Bank 9

Calculate the value of  \(\dfrac{e^{\small{\dfrac{i \pi}{3}}}-e^{-\small{\dfrac{i \pi}{3}}}}{2 i}\).  (2 marks)

Show Answers Only

\(\dfrac{\sqrt{3}}{2}\)

Show Worked Solution
\(\dfrac{e^{\small{\dfrac{i \pi}{3}}}-e^{-\small{\dfrac{i \pi}{3}}}}{2 i}\) \(=\dfrac{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}-\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)}{2 i}\)
  \(=\dfrac{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}-\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)}{2 i}\)
  \(=\dfrac{2 i \sin \frac{\pi}{3}}{2 i}\)
  \(=\sin \frac{\pi}{3}\)
  \(=\dfrac{\sqrt{3}}{2}\)

Filed Under: Exponential Form Tagged With: Band 3, smc-1191-35-Exponential - Mod/Arg

Complex Numbers, EXT2 N1 EQ-Bank 6

Given  \(z=\dfrac{-1-i \sqrt{3}}{1+i}\), calculate  \(z^2\)  in exponential form.  (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(2 e^{\small{\dfrac{i \pi}{6}}}\)

Show Worked Solution
\(z\) \(=\dfrac{-1-i \sqrt{3}}{1+i} \times \dfrac{1-i}{1-i}\)
  \(=\dfrac{(-1-i \sqrt{3})(1-i)}{1-i^2}\)
  \(=\dfrac{-1+i-i \sqrt{3}+i^2 \sqrt{3}}{2}\)
  \(=\dfrac{-1-\sqrt{3}}{2}+i\left(\dfrac{1-\sqrt{3}}{2}\right)\)

 

\(\abs{z}\) \(=\sqrt{\left(\dfrac{-1-\sqrt{3}}{2}\right)^2+\left(\dfrac{1-\sqrt{3}}{2}\right)^2}\)
  \(=\sqrt{\dfrac{1+2 \sqrt{3}+3+1-2 \sqrt{3}+3}{4}}\)
  \(=\sqrt{2}\)

\(\text{Find}\ \ \arg (z):\)

\(\tan \theta\) \(=\dfrac{\frac{1-\sqrt{3}}{2}}{\frac{-1-\sqrt{3}}{2}}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
\(\theta\) \(=15^{\circ}=\dfrac{\pi}{12}\)

\(\therefore \arg (z)=-\dfrac{11 \pi}{12}\)
 

\(z\) \(=\sqrt{2} \operatorname{cis}\left(-\dfrac{11 \pi}{12}\right)\)
\(z^2\) \(=(\sqrt{2})^2 \operatorname{cis}\left(-\dfrac{11 \pi}{12} \times 2+2 \pi\right)\)
  \(=2 \operatorname{cis}\left(\dfrac{\pi}{6}\right)\)
  \(=2 e^{\small{\dfrac{i \pi}{6}}}\)

Filed Under: Exponential Form Tagged With: Band 4, smc-1191-35-Exponential - Mod/Arg

Copyright © 2014–2025 SmarterEd.com.au · Log in