The number \(w=e^{\small{\dfrac{2 \pi i}{3}}}\) is a complex cube root of unity. The number \(\gamma\) is a cube root of \(w\). --- 12 WORK AREA LINES (style=lined) --- --- 12 WORK AREA LINES (style=lined) --- i. \(w=e^{\small{\dfrac{2 \pi i}{3}}} \Rightarrow \ \text{complex (cube) root of 1}\) \(\gamma^3=w, \quad \gamma \bar{\gamma}=\abs{\gamma}^2=1\) \(\text{Show}\ \ \gamma+\bar{\gamma}\ \ \text{is a real root of} \ \ z^3-3 z+1=0:\) \(\gamma+\bar{\gamma}=a+b i+a-b i=2 a \quad(a \in \mathbb{R})\) \(\therefore \gamma+\bar{\gamma} \ \ \text{is a real root of} \ \ z^3-3 z+1=0.\) ii. \(e^{\small{\dfrac{2 \pi i}{9}}}\ \ \text{is a cube root of}\ \ \omega \ \Rightarrow \ \Bigg(e^{\small{\dfrac{2 \pi i}{9}}}\Bigg)^3=e^{\small{\dfrac{2 \pi i}{3}}}\) \(\text{Cubic roots are} \ \dfrac{2}{3} \ \text {rotations from each other.}\) \(\text{Roots of} \ \ z^3-3 z+1=0:\) \(\text{Product of roots} \ \ \alpha B \gamma=-\dfrac{d}{a}:\) \(\text{If} \ \ n=1,\) \(\cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{4 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right)=-\dfrac{1}{8}\ \ \text{(see above)}\) \(\text {If} \ \ n=2,\) \(\cos \left(\dfrac{4 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right) \cdot \cos \left(\dfrac{2\pi}{9}\right)=-\dfrac{1}{8}\) \(\therefore \cos \left(\dfrac{2^n \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+1} \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+2} \pi}{9}\right)=-\dfrac{1}{8}\) i. \(w=e^{\small{\dfrac{2 \pi i}{3}}} \Rightarrow \ \text{complex (cube) root of 1}\) \(\gamma^3=w, \quad \gamma \bar{\gamma}=\abs{\gamma}^2=1\) \(\text{Show}\ \ \gamma+\bar{\gamma}\ \ \text{is a real root of} \ \ z^3-3 z+1=0:\) \(\text{Show}\ \ \gamma+\bar{\gamma} \ \ \text{is real:}\) \(\gamma+\bar{\gamma}=a+b i+a-b i=2 a \quad(a \in \mathbb{R})\) \(\therefore \gamma+\bar{\gamma} \ \ \text{is a real root of} \ \ z^3-3 z+1=0.\) ii. \(e^{\small{\dfrac{2 \pi i}{9}}}\ \ \text{is a cube root of}\ \ \omega \ \Rightarrow \ \Bigg(e^{\small{\dfrac{2 \pi i}{9}}}\Bigg)^3=e^{\small{\dfrac{2 \pi i}{3}}}\) \(\text{Cubic roots are} \ \dfrac{2}{3} \ \text {rotations from each other.}\) \(\text{Roots of} \ \ z^3-3 z+1=0:\) \(\text{Product of roots} \ \ \alpha B \gamma=-\dfrac{d}{a}:\) \(\text{If} \ \ n=1,\) \(\cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{4 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right)=-\dfrac{1}{8}\ \ \text{(see above)}\) \(\text {If} \ \ n=2,\) \(\cos \left(\dfrac{4 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right) \cdot \cos \left(\dfrac{2\pi}{9}\right)=-\dfrac{1}{8}\) \(\therefore \cos \left(\dfrac{2^n \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+1} \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+2} \pi}{9}\right)=-\dfrac{1}{8}\)
\((\gamma+\bar{\gamma})^3-3(\gamma+\bar{\gamma})+1\)
\(=\gamma^3+3 \gamma^2 \bar{\gamma}+3 \gamma \bar{\gamma}^2+\bar{\gamma}^3-3 \gamma-3 \bar{\gamma}+1\)
\(=\gamma^3+3 \gamma\abs{\gamma}^2+3 \bar{\gamma}\abs{\gamma}^2+\bar{\gamma}^3-3 \gamma-3 \bar{\gamma}+1\)
\(=w+3 \gamma+3 \bar{\gamma}+\bar{w}-3 \gamma-3 \bar{\gamma}+1\)
\(=w+\bar{w}+1\)
\(=0 \quad \text{(Sum of complex roots of 1 = 0)}\)
\(\text{Show}\ \ \gamma+\bar{\gamma} \ \ \text{is real:}\)
\((\gamma+\bar{\gamma})_1\)
\(=2 \cos \left(\dfrac{2 \pi}{9}\right)\)
\((\gamma+\bar{\gamma})_2\)
\(=2 \cos \left(\dfrac{8 \pi}{9}\right)\)
\((\gamma+\bar{\gamma})_3\)
\(=2 \cos \left(\dfrac{4\pi}{9}\right)\)
\(2 \cos \left(\dfrac{2 \pi}{9}\right) \cdot 2 \cos \left(\dfrac{8 \pi}{9}\right) \cdot 2 \cos \left(\dfrac{4 \pi}{4}\right)\)
\(=-1\)
\(\cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right) \cdot \cos \left(\dfrac{4 \pi}{9}\right)\)
\(=-\dfrac{1}{8}\)
\(\text{Consider} \ \ \cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+1} \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+2} \pi}{9}\right):\)
\(\Rightarrow \ \text{Multiplying each argument by 2 does not change the equation}\)
\((\gamma+\bar{\gamma})^3-3(\gamma+\bar{\gamma})+1\)
\(=\gamma^3+3 \gamma^2 \bar{\gamma}+3 \gamma \bar{\gamma}^2+\bar{\gamma}^3-3 \gamma-3 \bar{\gamma}+1\)
\(=\gamma^3+3 \gamma\abs{\gamma}^2+3 \bar{\gamma}\abs{\gamma}^2+\bar{\gamma}^3-3 \gamma-3 \bar{\gamma}+1\)
\(=w+3 \gamma+3 \bar{\gamma}+\bar{w}-3 \gamma-3 \bar{\gamma}+1\)
\(=w+\bar{w}+1\)
\(=0 \quad \text{(Sum of complex roots of 1 = 0)}\)
\((\gamma+\bar{\gamma})_1\)
\(=2 \cos \left(\dfrac{2 \pi}{9}\right)\)
\((\gamma+\bar{\gamma})_2\)
\(=2 \cos \left(\dfrac{8 \pi}{9}\right)\)
\((\gamma+\bar{\gamma})_3\)
\(=2 \cos \left(\dfrac{4\pi}{9}\right)\)
\(2 \cos \left(\dfrac{2 \pi}{9}\right) \cdot 2 \cos \left(\dfrac{8 \pi}{9}\right) \cdot 2 \cos \left(\dfrac{4 \pi}{4}\right)\)
\(=-1\)
\(\cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{8 \pi}{9}\right) \cdot \cos \left(\dfrac{4 \pi}{9}\right)\)
\(=-\dfrac{1}{8}\)
\(\text{Consider} \ \ \cos \left(\dfrac{2 \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+1} \pi}{9}\right) \cdot \cos \left(\dfrac{2^{n+2} \pi}{9}\right):\)
\(\Rightarrow \ \text{Multiplying each argument by 2 does not change the equation}\)
Complex Numbers, EXT2 N2 2024 HSC 16b
The number \(w=e^{\small{\dfrac{2 \pi i}{3}}}\) is a complex cube root of unity. The number \(\gamma\) is a cube root of \(w\). --- 12 WORK AREA LINES (style=lined) --- --- 12 WORK AREA LINES (style=lined) ---