SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N1 2023 HSC 7 MC

Which of the following statements about complex numbers is true?

  1. For all real numbers \(x, y, \theta\)  with  \(x \neq 0\),

\(\tan \theta=\dfrac{y}{x} \ \Rightarrow \ x+i y=r e^{i \theta}\), for some real number \(r\).

  1. For all non-zero complex numbers \(z_1\) and \(z_2\),

\(\operatorname{Arg}\left(z_1\right)=\theta_1\)  and  \(\operatorname{Arg}\left(z_2\right)=\theta_2 \ \Rightarrow \ \operatorname{Arg}\left(z_1 z_2\right)=\theta_1+\theta_2,\)

where \(\operatorname{Arg}\) denotes the principal argument.

  1. For all real numbers \(r_1, r_2, \theta_1, \theta_2\)  with  \(r_1, r_2>0\),

\(r_1 e^{i \theta_1}=r_2 e^{i \theta_2} \ \Rightarrow \ r_1=r_2\)  and  \(\theta_1=\theta_2 \text {. }\)

  1. For all real numbers \(x, y, r, \theta\)  with  \(r>0\)  and  \(x \neq 0\),

\(x+i y=r e^{i \theta} \ \Rightarrow \ \theta=\arctan  \Big(\dfrac{y}{x} \Big)\)

Show Answers Only

\(A\)

Show Worked Solution

\(\text{Eliminating options by contradiction}\)

\(\text{Option}\ B:\)

\(\text{If}\ \ \theta_1= \pi\ \ \text{and}\ \ \theta_2=\dfrac{\pi}{2}, \ \theta_1 + \theta_2 = \dfrac{3\pi}{2} > \pi \)

\( -\pi < \operatorname{Arg}\left(z_1 z_2\right) < \pi\ \ \ \  \text{(Eliminate}\ B) \)

♦♦♦ Mean mark 18%.

\(\text{Option}\ C:\)

\(\text{If}\ \ \theta_1= \pi\ \ \text{and}\ \ \theta_2=3\pi, \ \operatorname{Arg}(e^{i\pi}) =  \operatorname{Arg}(e^{3i\pi}) \)

\( \text{However,}\ \ \theta_1 \neq \theta_2\ \ \ \  \text{(Eliminate}\ C) \)
 

\(\text{Option}\ D:\)

\(\text{If}\ \ x=y=-1, \ \theta=-\dfrac{3\pi}{4} \ \ (r>0) \)

\( \text{However,}\ \ \arctan\Big(\dfrac{-1}{-1}\Big)=\dfrac{\pi}{4} \ \ \  \text{(Eliminate}\ D) \)

\(\Rightarrow A\)

Filed Under: Argand Diagrams and Mod/Arg form, Exponential Form Tagged With: Band 6, smc-1049-40-Mod/Arg arithmetic, smc-1191-70-Other

Complex Numbers, EXT2 N1 2020 HSC 9 MC

What is the maximum value of  `|e^(i theta) - 2| + |e^(i theta) + 2|`  for  `0 ≤ theta ≤ 2 pi`?

  1. `sqrt5`
  2. `4`
  3. `2 sqrt5`
  4. `10`
Show Answers Only

`C`

Show Worked Solution

`e^(i theta) = a + ib \ \ text{where}\ \ a^2 + b^2 =1`

Mean mark 56%.
`X` `= |e^(i theta) – 2| + |e^(i theta) + 2|`
  `= | (a – 2) + ib | + | (a + 2) + i b |`
  `= sqrt((a-2)^2 + b^2) + sqrt((a+2)^2 + b^2)`
  `= sqrt(a^2 – 4a + 4 + b^2) + sqrt(a^2 + 4a + 4 + b^2`
  `= sqrt(5 – 4a) + sqrt(5 + 4a)`

 

`frac{dX}{da}` `= -frac{1}{2} xx 4 xx frac{1}{sqrt(5 – 4a)} + frac{1}{2} xx 4 xx frac{1}{sqrt(5 + 4a)}`
  `= frac{2}{sqrt(5 + 4a)} – frac{2}{sqrt(5 – 4a)}`

 
`text(When)\ \ frac{dX}{da} = 0:`

`5 + 4a` `= 5 – 4a`
`a` `= 0`

 
`:. X_text(max) = 2 sqrt5`
 
`=> \ C`

Filed Under: Exponential Form Tagged With: Band 4, smc-1191-70-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in