Which expression is equal to `int tan^2 x\ dx`?
- `tan x - x + C`
- `tan x - 1 + C`
- `(tan^3 x^2)/6 + C`
- `(tan^3 x)/3 + C`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Which expression is equal to `int tan^2 x\ dx`?
`A`
`text(Consider option)\ A:`♦♦ Mean mark 35%.
`d/(dx) (tan x – x + C)`
`= sec^2 x – 1`
`= tan^2 x`
`:. int tan^2 x\ dx = tan x – x + C`
`=> A`
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`int_0^(pi/4) 1/(1 - sinx)\ dx`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need to prove)`
`sec^2x + secxtanx = (1 + sinx)/(cos^2x)`
`text(LHS)` | `=sec^2x + secx tanx` |
`=1/(cos^2x) + 1/(cosx) xx (sinx)/cosx` | |
`=1/(cos^2x) + (sinx)/(cos^2x)` | |
`=(1 + sinx)/(cos^2x)` | |
`= text(RHS)\ \ \ \ text(… as required)` |
ii. `text(Need to prove)`
`sec^2x + secx tanx` | `= 1/(1\ – sinx)` |
`text(i.e.)\ \ (1 + sinx)/(cos^2x)` | `= 1/(1\ – sin x)\ \ \ \ \ text{(part (i))}` |
`text(LHS)` | `= (1 + sinx)/(cos^2x)` |
`=(1 + sin x)/(1\ – sin^2x)` | |
`=(1 + sinx)/((1\ – sinx)(1 + sinx)` | |
`=1/(1\ – sinx)\ \ \ \ text(… as required)` |
iii. `int_0^(pi/4) 1/(1\ – sinx)\ dx`
`= int_0^(pi/4) (sec^2x + secx tanx)\ dx`
`= [tanx + secx]_0^(pi/4)`
`= [(tan(pi/4) + sec(pi/4)) – (tan0 + sec0)]`
`= [(1 + 1/(cos(pi/4)))\ – (0 + 1/(cos0))]`
`= 1 + sqrt2\ – 1`
`= sqrt2`