SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT1 V1 EQ-Bank 3

Two squares \(OPQR\) and \(OSTU\), are drawn in the diagram below, with  \(O R=1, OS=2\)  and  \(\angle S O R=\theta\)  where  \(0^{\circ} \leqslant \theta \leqslant 90^{\circ}\).

Let  \(\overrightarrow{O S}=2 \underset{\sim}{i}\)  and  \(\overrightarrow{O U}=-2 \underset{\sim}{j}.\)
 

  1. Using vector methods, show  \(\overrightarrow{OP}=-\sin \theta \underset{\sim}{i}+\cos \theta \underset{\sim}{j}\).    (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Using vector methods, show that if \(Q, R\) and \(T\) are collinear,  \(\cos \theta-\sin \theta=\dfrac{1}{2}\).    (3 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\text{Proof (Show worked solutions)}\)

b.   \(\text{Proof (Show worked solutions)}\)

Show Worked Solution

a.    \(\text{Show} \ \ \overrightarrow{OP}=-\sin \theta \underset{\sim}{i}+\cos \theta \underset{\sim}{j}\)

\(\angle P O R\) \(=90^{\circ} \ \text{(internal angle of square)}\)
\(\angle XOP\) \(=(90-\theta)^{\circ}\ \ (\text{\(180^{\circ}\) in straight line)}\)
\(\angle XPO\) \(=\theta\ \ \left(180^{\circ} \ \text{in} \ \Delta XPO \right)\)
\(XP\) \(=\cos \theta\)
\(XO\) \(=\sin \theta\)

  
\(\therefore \overrightarrow{OP}=-\sin \theta\underset{\sim}{i}+\cos \theta\underset{\sim}{j}\)
 

b.    \(\text{If   \(Q, R, T\)  are collinear:}\)

\(m_{\overrightarrow{QR}}=m_{\overrightarrow{R T}} \quad \text{(same gradient through \(R)\)}\)

\(m_{\overrightarrow{Q R}}=m_{\overrightarrow{O P}}=\dfrac{\cos \theta}{-\sin \theta}\ \ \text{(opposite sides of a square)}\)
 

\(\displaystyle T\binom{2}{-2}, R\binom{\cos \theta}{\sin \theta}\)

\(m_{\overrightarrow{R T}}=\dfrac{\sin \theta+2}{\cos \theta-2}\)
 

\(\text{Equating gradients:}\)

\(\dfrac{\cos \theta}{-\sin \theta}\) \(=\dfrac{\sin \theta+2}{\cos \theta-2}\)
\(\cos ^2 \theta-2 \cos \theta\) \(=-\sin ^2 \theta-2 \sin \theta\)
\(\cos ^2 \theta+\sin ^2 \theta\) \(=2 \cos \theta-2 \sin \theta\)
\(1\) \(=2(\cos \theta-\sin \theta)\)
\(\dfrac{1}{2}\) \(=\cos \theta-\sin \theta\)

 
\(\therefore Q, R \ \text{and \(T\) are collinear when  \(\cos \theta-\sin \theta=\dfrac{1}{2}\)}\).

Filed Under: Vectors and Geometry (Ext1) Tagged With: Band 4, Band 5, smc-1211-15-Square, smc-1211-80-Collinear

Copyright © 2014–2025 SmarterEd.com.au · Log in