`OABC` is a quadrilateral.
`P`, `Q`, `R` and `S` divide each side of the quadrilateral in half as shown below.
Prove, using vectors, that `PQRS` is a parallelogram. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
`OABC` is a quadrilateral.
`P`, `Q`, `R` and `S` divide each side of the quadrilateral in half as shown below.
Prove, using vectors, that `PQRS` is a parallelogram. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
`text(Consider diagonal)\ \ overset(->)(OB):`
`overset(->)(OB) = overset(->)(OA) + overset(->)(AB) = overset(->)(OC)+ overset(->)(CB)`
`overset(->)(PQ) = overset(->)(PA) + overset(->)(AQ) = 1/2(overset(->)(OA) + overset(->)(AB)) = 1/2overset(->)(OB)`
`overset(->)(SR) = overset(->)(SC) + overset(->)(CR) = 1/2(overset(->)(OC) + overset(->)(CB)) = 1/2overset(->)(OB)`
`:.overset(->)(PQ) = overset(->)(SR)`
`text(Consider diagonal)\ \ overset(->)(AC):`
`overset(->)(AC) = overset(->)(AB) + overset(->)(BC) = overset(->)(AO) + overset(->)(OC)`
`overset(->)(QR) = overset(->)(QB) + overset(->)(BR) = 1/2(overset(->)(AB) + overset(->)(BC)) = 1/2overset(->)(AC)`
`overset(->)(PS) = overset(->)(PO) + overset(->)(OS) = 1/2(overset(->)(AO) + overset(->)(OC)) = 1/2overset(->)(AC)`
`:. overset(->)(QR) = overset(->)(PS)`
`text(S)text(ince)\ PQRS\ text(has equal opposite sides,)`
`PQRS\ text(is a parallelogram.)`
`PQRS` is a parallelogram, where `overset(->)(PQ) = underset~a` and `vec(PS) = underset~b`
Prove, using vectors, that the sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
`overset(->)(PR) = underset~a + underset~b,\ \ overset(->)(SQ) = underset~a – underset~b`
`overset(->)(PQ) = overset(->)(SR) = underset~a`
`overset(->)(PS) = overset(->)(QR) = underset~b`
`text(Prove)\ \ |underset~a + underset~b|^2 + |underset~a – underset~b|^2 = 2|underset~a|^2 + 2|underset~b|^2`
`|underset~a + underset~b|^2 + |underset~a – underset~b|^2` | `= (underset~a + underset~b) · (underset~a + underset~b) + (underset~a – underset~b)(underset~a – underset~b)` |
`= underset~a · underset~a + underset~b · underset~b + 2underset~a · underset~b + underset~a · underset~a + underset~b · underset~b – 2underset~a · underset~b` | |
`= |underset~a|^2 + |underset~b|^2 + |underset~a|^2 + |underset~b|^2` | |
`= 2|underset~a|^2 + 2|underset~b|^2\ \ …\ text(as required)` |