SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT1 V1 2021 HSC 14c

  1. For vector `underset~v`, show that  `underset~v · underset~v = |underset~v|^2`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. In the trapezium `ABCD`, `BC` is parallel to `AD` and  `|overset(->)(AC)| = |overset(->)(BD)|`.
     
     
         

  3. Let  `underset~a = overset(->)(AB), underset~b = overset(->)(BC)`  and  `overset(->)(AD) = koverset(->)(BC)`,  where  `k > 0`.
  4. Using part (i), or otherwise, show  `2underset~a · underset~b + (1-k)|underset~b|^2 = 0`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solution)`
  2. `text(See Worked Solution)`
Show Worked Solution

i.  `text(Let)\ \ underset~v = ((x),(y))`

`|underset~v| = sqrt(x^2 + y^2)`

`underset~v · underset~v = x^2 + y^2 = (sqrt(x^2 + y^2))^2 = |underset~v|^2`

 

♦♦♦ Mean mark part (ii) 18%.

ii.   `text(Show)\ \ 2underset~a · underset~b + (1-k) |underset~b|^2 = 0`

`|overset(->)(AC)|` `= |overset(->)(BD)|`
`|underset~a + underset~b|` `= |kunderset~b-underset~a|`
`|underset~a + underset~b|^2` `= |kunderset~b-underset~a|^2`
`(underset~a + underset~b)(underset~a + underset~b)` `= (kunderset~b-underset~a)(kunderset~b-underset~a)\ \ text{(see part a.)}`
`underset~a · underset~a + 2underset~a · underset~b + underset~b · underset~b` `= k^2 underset~b · underset~b-2kunderset~a · underset~b + underset~a · underset~a`
`2underset~a · underset~b + 2kunderset~a · underset~b + underset~b · underset~b-k^2 underset~b · underset~b` `= 0`
`2underset~a · underset~b(1 + k) + underset~b · underset~b(1-k^2)` `= 0`
`2underset~a · underset~b(1 + k) + underset~b · underset~b(1 + k)(1-k)` `= 0`
`2underset~a · underset~b +  (1-k)|underset~b|^2` `= 0`

Filed Under: Vectors and Geometry (Ext1) Tagged With: Band 4, Band 6, smc-1211-35-Trapezium, smc-1211-40-Ratio/Scalar

Copyright © 2014–2025 SmarterEd.com.au · Log in