SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT1 V1 2023 HSC 14c

  1. Given a non-zero vector  \(\left(\begin{array}{l}p \\ q\end{array}\right)\),  it is known that the vector  \(\left(\begin{array}{c}q \\ -p\end{array}\right)\) is perpendicular to  \(\left(\begin{array}{l}p \\ q\end{array}\right)\)  and has the same magnitude. (Do NOT prove this.)
  2. Points \(A\) and \(B\) have position vectors  \(\overrightarrow{O A}=\left(\begin{array}{l}a_1 \\ a_2\end{array}\right)\)  and  \(\overrightarrow{O B}=\left(\begin{array}{l}b_1 \\ b_2\end{array}\right)\), respectively.
  3. Using the given information, or otherwise, show that the area of triangle  \(O A B\)  is  \(\dfrac{1}{2}\left|a_1 b_2-a_2 b_1\right|\).  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. The point \(P\) lies on the circle centred at  \(I(r, 0)\)  with radius  \(r>0\),  such that  \(\overrightarrow{I P}\)  makes an angle of \(t\) to the horizontal.

  5. The point \(Q\) lies on the circle centred at  \(J(-R, 0)\)  with radius  \(R>0\),  such that  \(\overrightarrow{J Q}\)  makes an angle of \(2 t\) to the horizontal.

  1. Note that  \(\overrightarrow{O P}=\overrightarrow{O I}+\overrightarrow{I P}\)  and  \(\overrightarrow{O Q}=\overrightarrow{O J}+\overrightarrow{J Q}\).
  2. Using part (i), or otherwise, find the values of \(t\), where  \(-\pi \leq t \leq \pi\), that maximise the area of triangle \(O P Q\).  (4 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. \(\text{See Worked Solutions}\)
  2. \(t=\dfrac{\pi}{3}, \ – \dfrac{\pi}{3} \)

Show Worked Solution

i.   
     

♦♦♦ Mean mark (i) 18%.
\(\Big{|}\text{proj}_{\overrightarrow{OA^{′}}} \overrightarrow{OB} \Big{|}\) \(=\ \text{⊥ height of}\ \triangle OAB\ \text{from side}\ \overrightarrow{OA} \)  
  \(= \Bigg{|} \dfrac{\overrightarrow{OB} \cdot \overrightarrow{OA^{′}}}{|\overrightarrow{OA^{′}}|} \Bigg{|} \)  
  \(= \Bigg{|} \dfrac{b_1a_2-b_2a_1}{|\overrightarrow{OA^{′}}|} \Bigg{|} \)  

 

\(\text{Area}\ \triangle AOB\) \(=\dfrac{1}{2} \Bigg{|} \dfrac{b_1a_2-b_2a_1}{|\overrightarrow{OA^{′}}|} \Bigg{|} \cdot |\overrightarrow{OA} | \)  
  \(=\dfrac{1}{2}\left|a_1 b_2-a_2 b_1\right|\ \ \ (\text{noting}\ \ |\overrightarrow{OA} |=|\overrightarrow{OA^{′}} |) \)  

 

ii.    \(\overrightarrow{OP}\) \(=\overrightarrow{OI}+\overrightarrow{IP}\)
    \(= \left(\begin{array}{l}r \\ 0\end{array}\right) + \left(\begin{array}{c} r\ \cos \ t \\ r\ \sin \ t\end{array}\right) \)
    \(= \left(\begin{array}{c} r(1+ \cos \ t) \\ r\ \sin \ t\end{array}\right) \)
♦♦♦ Mean mark (ii) 8%.
\(\overrightarrow{OQ}\) \(=\overrightarrow{OJ}+\overrightarrow{JQ}\)
  \(= \left(\begin{array}{c} -R \\ 0 \end{array}\right) + \left(\begin{array}{l} R\ \cos\ 2t \\ R\ \sin\ 2t\end{array}\right) \)
  \(= \left(\begin{array}{c} R(\cos\ 2t-1) \\ R\ \sin\ 2t\end{array}\right) \)

 
\(\text{Using part (i):}\)

\(A_{\triangle OPQ}\)

\(=\dfrac{1}{2} \big{|} r(1+\cos\ t) \cdot R \sin\ 2t-r\ \sin\ t\ \cdot R(\cos\ 2t-1)\ \big{|} \)

 
  \(=\dfrac{rR}{2} \big{|} \sin\ 2t+\cos\ t\ \sin\ 2t-\sin\ t\ \cos\ 2t+\sin\ t\ \big{|} \)  
  \(=\dfrac{rR}{2} \big{|} \sin\ 2t+\sin\ t\ + \sin(2t-t) \big{|} \)  
  \(=\dfrac{rR}{2} \big{|} 2\sin\ t\ \cos\ t +2\sin\ t \big{|} \)  
  \(= rR \big{|} \sin\ t(\cos\ t+1) \big{|} \)  

 
\(\text{Let}\ \ f(t)=\sin\ t(\cos\ t+1) \)

\(f^{′}(t) \) \(=\cos\ t(\cos\ t+1)+\sin\ t(-\sin\ t) \)  
  \(=\cos^{2}t+\cos\ t-\sin^{2}t\)  
  \(=\cos^{2}t+\cos\ t-(1-\cos^{2}t) \)  
  \(=2\cos^{2}t+\cos\ t-1 \)  
  \(=(2\cos^{2}t-1)(\cos\ t+1) \)  

 
\(\text{SP’s when}\ \ f^{′}(t)=0:\)

\(\cos\ t\) \(=\dfrac{1}{2} \) \(\cos\ t\) \(=-1\)
\(t\) \(=\dfrac{\pi}{3}, \ – \dfrac{\pi}{3} \) \(t\) \(=\pi, \ -\pi \)

 
\(\text{Testing SP’s:}\)

\(f(\pi) = f(- \pi) = 0\)

\(\therefore A_{\triangle AOB}\ \text{is maximum when}\ \ t=\dfrac{\pi}{3}, \ – \dfrac{\pi}{3} \)

Filed Under: Vectors and Geometry (Ext1) Tagged With: Band 6, smc-1211-10-Triangle, smc-1211-70-Projections

Vectors, EXT1 V1 2020 HSC 9 MC

The projection of the vector  `((6),(7))`  onto the line  `y = 2x`  is  `((4),(8))`.

The point  `(6, 7)`  is reflected in the line  `y = 2x`  to a point `A`.

What is the position vector of the point `A`?

  1. `((6),(12))`
  2. `((2),(9))`
  3. `((−6),(7))`
  4. `((−2),(1))`
Show Answers Only

`B`

Show Worked Solution

`text(Graph the projection and reflection:)`

 

`=>B`

Filed Under: Operations With Vectors (Ext1), Vectors and Geometry (Ext1) Tagged With: Band 4, smc-1086-30-Unit Vectors and Projections, smc-1211-60-Other, smc-1211-70-Projections

Copyright © 2014–2025 SmarterEd.com.au · Log in