Using the substitution `u=1+e^x, \int_0^{\log _e 2} \frac{1}{1+e^x}dx` can be expressed as
- `\int_0^{\log _e 2}\left(\frac{1}{u-1}-\frac{1}{u}\right) du`
- `\int_2^3\left(\frac{1}{u}-\frac{1}{u-1}\right) du`
- `\int_1^3\left(\frac{1}{u}-\frac{1}{u-1}\right) du`
- `\int_2^3\left(\frac{1}{u-1}-\frac{1}{u}\right) du`
- `\int_2^{1+e^2}\left(\frac{1}{u-1}-\frac{1}{u}\right) du`