SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

GEOMETRY, FUR1 2021 VCAA 4 MC

The side length of an equilateral triangle is 4 cm, as shown in the diagram below.
 

Which one of the following is not a correct calculation for the area of this triangle?

  1. `{sqrt3 xx 4^2}/{4}`
  2. `2 xx sqrt12`
  3. `1/2 xx 4 xx 4`
  4. `4^2/2 xx sin(60^@)`
  5. `sqrt{6 (6-4)^3}`
Show Answers Only

`C`

Show Worked Solution

`text{By Pythagoras:}`

`h = sqrt{4^2 -2^2} = sqrt12 = 2 sqrt3`
 

`text{Area}` `= 2 xx (1/2 xx 2 xx 2 sqrt3)`
  `= 4 sqrt3 \ text{cm}^2`

 
`text{Option C is the only option} ≠ 4 sqrt3`
 
`=> C`

Filed Under: Non-Right-Angled Trig Tagged With: Band 4, smc-3589-10-Sine rule, smc-3589-30-Heron's formula

GEOMETRY, FUR1 2006 VCAA 5 MC

A block of land is triangular in shape.

The three sides measure 36 m, 58 m and 42 m.

To calculate the area, Heron’s formula is used.

The correct application of Heron’s formula for this triangle is

  1. `text(Area) = sqrt(136\ (136 − 36) (136 − 58) (136 − 42))`
  2. `text(Area) =sqrt(136\ (136 −18) (136 − 29) (136 − 21))`
  3. `text(Area) =sqrt(68\ (68 − 36) (68 − 58) (68 − 42))`
  4. `text(Area) = sqrt(68\ (68 −18) (68 − 29) (68 − 21))`
  5. `text(Area) = sqrt(68\ (136 − 36) (136 − 58) (136 − 42))` 
Show Answers Only

`C`

Show Worked Solution
`s` `= (36 + 58 + 42)/2`
  `= 68`

 

`:.\ text(Area)` `= sqrt(s(s – a) xx (s – b) xx (s – c))`
  `= sqrt(68 (68 – 36) xx (68 – 58) xx (68 – 42))`

 
`=>  C`

Filed Under: Non-Right-Angled Trig Tagged With: Band 3, smc-3589-30-Heron's formula

GEOMETRY, FUR1 2013 VCAA 2 MC

The distances from a kiosk to points `A` and `B` on opposite sides of a pond are found to be 12.6 m and 19.2 m respectively.

The angle between the lines joining these points to the kiosk is 63°.
 

 The distance, in m, across the pond between points `A` and `B` can be found by evaluating

A.  `1/2 xx 12.6 xx 19.2 xx sin(63°)`

B.  `{19.2 xx sin(63°)}/12.6`

C.  `sqrt(12.6^2 + 19.2^2)`

D.  `sqrt(12.6^2 + 19.2^2 - 2 xx 12.6 xx 19.2 xx cos(63°)`

E.  `sqrt{s(s - 12.6)(s - 19.2)(s - 63)} , text(where)\ s = 1/2 (12.6 + 10.2 + 63)` 

Show Answers Only

`D`

Show Worked Solution

`text(Using the cosine rule:)`

`(AB)^2` `= 12.6^2 xx 19.2^2 – 2 xx 12.6 xx 19.2 xx cos(63°)`
`:. AB` `= sqrt{12.6^2 xx 19.2^2 – 2 xx 12.6 xx 19.2 xx cos(63°)}`

 
`=>D`

Filed Under: Non-Right-Angled Trig Tagged With: Band 3, smc-3589-20-Cosine rule, smc-3589-30-Heron's formula

GEOMETRY, FUR1 2009 VCAA 2 MC

GEOMETRY, FUR1 2009 VCAA 2 MC

The area (in m2) of triangle `XYZ` can be found using Heron’s formula  `A = sqrt(s(s−a)(s−b)(s−c))`, with  `a = 1.92`,  `b = 8.24`,  `c = 9.20`  and  `s =`

A.     `4.40`

B.     `6.45`

C.     `9.20`

D.     `9.68`

E.   `19.36`

Show Answers Only

`D`

Show Worked Solution
`s` `= (a + b + c) / 2`
  `= (1.92 + 8.24 + 9.20) /2`
  `= 9.68`

 
`=>  D`

Filed Under: Non-Right-Angled Trig Tagged With: Band 3, smc-3589-30-Heron's formula

Copyright © 2014–2025 SmarterEd.com.au · Log in