0.1 mol of solid sodium acetate is dissolved in 500 mL of 0.1 mol L\(^{-1}\) \(\ce{HCl}\) in a beaker. This solution has a pH of 4.8 .
500 mL of distilled water is then added to the beaker.
What is the pH of the final solution?
- 2.4
- 4.5
- 4.8
- 5.1
\(C\)
- The initial reaction between sodium acetate and hydrochloric acid runs to completion as \(\ce{HCl}\) is a strong acid:
- \(\ce{CH3COO-(aq) + HCl(aq) -> CH3COOH(aq) + Cl-(aq)}\)
- \(n(\ce{CH3COO-}) = 0.1\ \text{mol}\)
- \(n(\ce{HCl}) = 0.5\ \text{L} \times 0.1\ \text{mol L}^{-1} = 0.05\ \text{mol}\)
- As they react in a \(1:1\) ratio, \(\ce{HCl}\) is the limiting reagent.
- \(n(\ce{CH3COO-_{\text{after reaction}}}) = n(\ce{CH3COO_{\text{initial}}})-n(\ce{CH3COO_{\text{reacted}}}) = 0.1-0.05 = 0.05\ \text{mol}\)
- \(n(\ce{CH3COOH_{\text{after reaction}}}) = n(\ce{CH3COO_{\text{reacted}}}) = 0.05\ \text{mol}\)
- The following equilibrium reaction is then established below dilution
- \(\ce{CH3COOH(aq) + H2O(l) \leftrightharpoons CH3COO-(aq) + H3O+(aq)}\)
- Therefore the following ice table can be constructed:
\begin{array} {|c|c|c|c|}
\hline & \ce{[CH3COOH]} & \ce{[CH3COO-]} & \ce{[H3O+]} \\
\hline \text{Initial} & 0.1 & 0.1 & 0 \\
\hline \text{Change} & -10^{-4.8} & +10^{-4.8} & +10^{-4.8} \\
\hline \text{Equilibrium} & 0.1-10^{-4.8} & 0.1+10^{-4.8} & +10^{-4.8} \\
\hline \end{array}
\(\therefore K_a = \dfrac{(0.1+10^{-4.8})(10^{-4.8})}{0.1-10^{-4.8}} = 1.585395 \times 10^{-5}\)
- Then considering the dilution which would shift the equilibrium position to the right.
\begin{array} {|c|c|c|c|}
\hline & \ce{[CH3COOH]} & \ce{[CH3COO-]} & \ce{[H3O+]} \\
\hline \text{Initial} & 0.1 \times \dfrac{500\ \text{mL}}{1000\ \text{mL}} = 0.05 & 0.1 \times \dfrac{500\ \text{mL}}{1000\ \text{mL}} = 0.05 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 0.05-x & 0.05+x & +x \\
\hline \end{array}
- As \(K_{eq}\) is small, \(0.05 -x \approx 0.05\) and \(0.05 + x \approx 0.05\).
- \(\therefore K_{eq} = \dfrac{0.05x}{0.05} = x = 1.585395 \times 10^{-5}\)
- \(\text{pH} = -\log_{10}\ce{[H3O+]} = -\log_{10}(1.585395 \times 10^{-5}) = 4.79962 = 4.8\ \text{(1 d.p.)}\)
\(\Rightarrow C\)