SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Proof, EXT2 P2 SM-Bank 5

Use mathematical induction to prove that

`n^5 + n^3 + 2n`

is divisible by 4 for integers  `n >= 1.`  (4 marks)

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(If)\ n = 1,`

`1 + 1 + 2 xx 1 = 4\ \ text{(divisible by 4)}`

`:. text(True for)\ n = 1`
 

`text(Assume true for)\ n = k`

`text(i.e.)\ \ k^5 + k^3 + 2k = 4P\ \ …\ text{(1)}\ \ (text(where)\ P ∈\ text(integer))`
 

`text(Prove true for)\ n = k + 1`

`text(i.e.)\ \ (k + 1)^5 + (k + 1)^3 + 2(k + 1)\ \ text(is divisible by 4)`

`text(Expanding:)`

`k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 + k^3 + 3k^2 + 3k + 1 + 2k + 2`

`= k^5 + 5k^4 + 11k^3 + 13k^2 + 8k + 4`

`= 4P + 5k^4 + 10k^3 + 13k^2 + 8k + 4\ \ \ \ text{(see (1) above)}`

`= 4P + 4 underbrace{(k^4 + 2k^3 + 3k^2+2k + 1)}_(text(integer)\ Q) + k^4 + 2k^3 + k^2`

`= 4(P + Q) + k^2(k^2 + 2k + 1)`

`= 4(P + Q) + k^2(k + 1)^2`
 

`text(For any integer)\ \ k >= 2, \ k^2(k + 1)^2\ \ text(is  (odd))^2 xx (text(even)^2)`

`text(and  (even))^2 = (2R)^2\ \ text(where)\ \ R ∈\ text(integer)`

`=> k^2(k + 1)^2 = 4R^2 xx (text(odd))^2\ \ \ text{(divisible by 4)}`

`:. text(True for)\ \ n = k + 1`

`:. text(S)text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ n >= 1.`

Filed Under: Induction, P2 Induction (Ext2) Tagged With: Band 6, smc-1044-20-Divisibility, smc-5115-20-Divisibility

Proof, EXT2 P2 EQ-Bank 5

Use mathematical induction to prove that  `7^n + 15^n`  is divisible by 11 where  `n`  is an odd integer.  (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

`text(Prove)\ \ 7^n + 15^n\ \ text(is divisible by 11, where)\ n\ text(is odd)`

`text(If)\ \ n = 1`

`7^n + 15^n` `= 7 + 15 = 22`
`22/11` `= 2\ \ \ :.\ text(Divisible by 11)`

 
`text(Assume true for)\ \ n = k`

`text(i.e.)\ 7^k + 15^k` `= 11P\ \ \ \ text{(}P\ text(integer) text{)}`
`7^k` `= 11P\ – 15^k\ \ \ \ \ …\ text{(∗)}`

 
`text(Prove true for)\ \ n = k + 2`

`7^(k + 2) + 15^(k + 2)` `= 7^2 * 7^k + 15^2 * 15^k`
  `= 49 (11P\ – 15^k) + 225 (15^k)\ \ \ text(… from)\ text{(∗)}`
  `= 49 * 11P\ – 49 * 15^k + 225 (15^k)`
  `= 49 * 11P + 176 * 15^k`
  `= 11 (49P + 16 * 15^k)`

  
`=>text(True for)\ n = k + 2`

`text(S)text(ince true for)\ n = 1,\ text(by PMI, true for odd integral)\ \ n >= 1`

Filed Under: 7. Induction and Other Series EXT1, Induction, P2 Induction (Ext2) Tagged With: Band 5, smc-1044-20-Divisibility, smc-5115-20-Divisibility

Copyright © 2014–2025 SmarterEd.com.au · Log in