SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2023 VCE SM-Bank 7 MC

One way of implementing Newton's method using pseudocode, with a tolerance level of 0.001 , is shown below.

The pseudocode is incomplete, with two missing lines indicated by an empty box.
 

  

Which one of the following options would be most appropriate to fill the empty box?
 



Show Answers Only

\(E\)

Show Worked Solution

\(\text{The tolerance}=\pm 0.001\)

\(\Big|\text{next_ x}-\text{prev_ x}\Big|<\ \text{tolerance}\)

\(\therefore\ \textbf{If }\ \ -0.001<\ \text{next_ x}-\text{prev_ x}\ <0.001\ \textbf{Then }\)

\(\text{If true }\textbf{Return }\text{next_ x}\)

\(\Rightarrow E\)

Filed Under: Pseudocode, Trapezium Rule and Newton Tagged With: Band 5, smc-5145-50-Newton's method, smc-5145-60-Pseudocode, smc-5196-20-Newton's method

Calculus, MET2 2023 VCE SM-Bank 5 MC

The algorithm below, described in pseudocode, estimates the value of a definite integral using the trapezium rule.
 

Consider the algorithm implemented with the following inputs.

The value of the variable sum after one iteration of the while loop would be closest to

  1. 1.281
  2. 1.289
  3. 1.463
  4. 1.617
  5. 2.136
Show Answers Only

\(C\)

Show Worked Solution

\((f(x), a, b, n)\ \rightarrow\ (\log_{e}x, 1, 3, 10) \)

\(h=\dfrac{b-a}{n}=\dfrac{3-1}{10}=\dfrac{1}{5}\)

\(\text{Sum}=f(a)+f(b)=\log_{e}1+\log_{e}3=\log_{e}3\)
  

\(\text{1st iteration of}\ \textbf{while }\text{loop:}\)

\(x\) \(=a+h=1+\dfrac{1}{5}=\dfrac{6}{5}\)
\(\text{Sum}\) \(=\text{Sum}+2\times f(x)\)
  \(=\log_{e}3+2\times f\Bigg(\dfrac{6}{5}\Bigg)\)
  \(=\log_{e}3+2\times \log_{e}{\Bigg(\dfrac{6}{5}\Bigg)}\)
  \(\approx 1.46325\dots\)

 

\(\Rightarrow C\)

Filed Under: Pseudocode, Trapezium Rule and Newton Tagged With: Band 5, smc-5145-04-Trapezium rule, smc-5145-60-Pseudocode, smc-5196-10-Trapezium rule

Copyright © 2014–2025 SmarterEd.com.au · Log in