A solution to the differential equation
\(\dfrac{d y}{d x}=e^{x-y}(\cos (x-y)-\cos (x+y))\) can be found using
- \(\displaystyle \int e^y \cos (y) d y=2 \int e^x \cos (x) d x\)
- \(\displaystyle\int \frac{e^y}{\sin (y)} d y=2 \int e^{-x} \sin (x) d x\)
- \(\displaystyle\int \frac{e^y}{\sin (y)} d y=2 \int e^x \sin (x) d x\)
- \(\displaystyle\int e^{-y} \sin (y) d y=2 \int \frac{e^x}{\cos (x)} d x\)