Find the particular solution to the differential equation `(x-2)(dy)/(dx)=xy` that passes through the point `(0,1)`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the particular solution to the differential equation `(x-2)(dy)/(dx)=xy` that passes through the point `(0,1)`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`y=(e^x(x-2)^2)/4`
`(x-2)(dy)/(dx)` | `=xy` | |
`1/y* dy/dx` | `=x/(x-2)` | |
`int 1/y\ dy` | `=int x/(x-2)\ dx` | |
`ln|y|` | `=int (x-2)/(x-2)+2/(x-2)\ dx` | |
`=int 1+2/(x-2)\ dx` | ||
`=x+2ln|x-2|+c` |
`text{Passes through (0,1):`
`ln1` | `=0+2ln|-2|+c` | |
`c` | `=-2ln2` |
`ln|y|` | `=x+2ln|x-2|-2ln2` | |
`=lne^x+ln(x-2)^2-ln2^2` | ||
`=ln(e^x((x-2)^2)/4)` | ||
`|y|` | `=(e^x(x-2)^2)/4` | |
`:.y` | `=(e^x(x-2)^2)/4\ \ (e^x>0,\ \ (x-2)^2>0)` |
Find the curve which satisfies the differential equation `(dy)/(dx) = -x/y` and passes through the point `(1, 0)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x^2+y^2=1`
`(dy)/(dx) = -x/y`
`int y\ dy = −int x\ dx`
`(y^2)/2 = -(x^2)/2 + c`
`text{Curve passes through (1, 0):}`
`0` | `= -1/2 + c` |
`c` | `= 1/2` |
`(y^2)/2` | `= -(x^2)/2 + 1/2` |
`y^2` | `= -x^2 + 1` |
`:.x^2+y^2` | `= 1` |
Solve the differential equation `(dy)/(dx) = (2ye^(2x))/(1 + e^(2x))` given that `y(0) = pi`. (4 marks)
`y = (pi(1 + e^(2x)))/2`
`int 1/y\ dy` | `= (2e^(2x))/(1 + e^(2x))\ dx` |
`log_e |y|` | `= log_e |1 + e^(2x)| + c` |
`text(When)\ \ x=0, \ y= pi:`
`log_e pi` | `= log_e |1 + e^0| + c` |
`c` | `= log_e pi – log_e 2` |
`= log_e\ pi/2` | |
`log_e |y|` | `= log_e(1 + e^(2x)) + log_e\ pi/2` |
`log_e |y|` | `= log_e\ (pi(1 + e^(2x)))/2` |
`:. y` | `= (pi(1 + e^(2x)))/2` |
Solve the differential equation `sqrt(2-x^2) (dy)/(dx) = 1/(2-y)`, given that `y(1) = 0`. Express `y` as a function of `x`. (5 marks)
--- 9 WORK AREA LINES (style=lined) ---
`y = 2-sqrt(4 + pi/2-2 sin^(-1)(x/sqrt 2))`
`sqrt(2-x^2) *(dy)/(dx)` | `= 1/(2-y)` |
`(2-y)* (dy)/(dx)` | `= 1/sqrt(2-x^2)` |
`int 2-y\ dy` | `= int 1/(sqrt(2-x^2))\ dx` |
`2y-y^2/2` | `= sin^(-1) (x/sqrt 2) + c` |
`text(Given)\ \ y(1) = 0:`
`0=sin^(-1) (1/sqrt 2) + c`
`c=-pi/4`
`2y-y^2/2` | `= sin^(-1) (x/sqrt 2)-pi/4` |
`y^2-4y` | `= -2 sin^(-1) (x/sqrt 2) + pi/2` |
`(y-2)^2-4` | `= -2 sin^(-1) (x/sqrt 2) + pi/2` |
`(y-2)^2` | `= 4 + pi/2-2 sin^(-1) (x/sqrt 2)` |
`(y-2)` | `= +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))` |
`y` | `=2 +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))` |
`text(Given)\ \ y=0\ \ text(when)\ \ x=1:`
`:. y=2-sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))`
A solution to the differential equation `(dy)/(dx) = (cos(x + y)-cos(x-y))/(e^(x + y))` can be obtained from
`A`
`dy/dx` | `=(cos(x + y)-cos(x-y))/(e^(x + y))` |
`(dy)/(dx)` | `= (cos(x) cos(y)-sin(x) sin(y)-cos(x) cos(y)-sin(x) sin(y))/(e^x ⋅ e^y)` |
`e^y *(dy)/(dx)` | `= (-2 sin(x) sin(y))/(e^x)` |
`e^y/(sin(y)) *(dy)/(dx)` | `= (-2 sin(x))/(e^x)` |
`:. int e^y/(sin(y))\ dy` | `= -int (2 sin(x))/e^x\ dx` |
`=> A`