Which of the following correctly expresses \(r\) as the subject of \(V=\pi r^2+x\) ?
- \(r=\pm\sqrt{\dfrac{V}{\pi}}-x\)
- \(r=\pm\sqrt{\dfrac{V}{\pi}-x}\)
- \(r=\pm\sqrt{\dfrac{V-x}{\pi}}\)
- \(r=\pm\dfrac{\sqrt{V-x}}{\pi}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Which of the following correctly expresses \(r\) as the subject of \(V=\pi r^2+x\) ?
\(C\)
\(V\) | \(=\pi r^2+x\) |
\(\pi r^2\) | \(=V-x\) |
\(r^2\) | \(=\dfrac{V-x}{\pi}\) |
\(\therefore\ r\) | \(=\pm\sqrt{\dfrac{V-x}{\pi}}\) |
\(\Rightarrow C\)
Which of the following correctly expresses \(b\) as the subject of \(y= ax+\dfrac{1}{4}bx^2\)?
\(B\)
\(y\) | \(= ax+\dfrac{1}{4}bx^2\) |
\(\dfrac{1}{4}bx^2\) | \(=y-ax\) |
\(bx^2\) | \(=4(y-ax)\) |
\(b\) | \(=\dfrac{4(y-ax)}{x^2}\) |
\(\Rightarrow B\)
If \(m = 8n^2\), what is a possible value of \(n\) when \(m=7200\)?
\(B\)
\(m\) | \(=8n^2\) |
\(n^2\) | \(=\dfrac{m}{8}\) |
\(n\) | \(=\pm\sqrt{\dfrac{m}{8}}\) |
\(\text{When}\ m=7200:\)
\(n\) | \(=\pm\sqrt{\dfrac{7200}{8}}\) |
\(=\pm 30\) |
\(\Rightarrow B\)
What is the formula for \(g\) as the subject of \(7d=8e+5g^2\)?
\(B\)
\(7d\) | \(=8e+5g^2\) |
\(5g^2\) | \(=7d-8e\) |
\(g^2\) | \(=\dfrac{7d-8e}{5}\) |
\(g\) | \(=\pm\sqrt{\dfrac{7d-8e}{5}}\) |
\(\Rightarrow B\)
Make \(r\) the subject of the equation \(V=4\pi r^2\). (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
\(r=\pm\sqrt{\dfrac{V}{4\pi}}\)
\(V\) | \(=4\pi r^2\) |
\(r^2\) | \(=\dfrac{V}{4\pi}\) |
\(\therefore\ r\) | \(=\pm\sqrt{\dfrac{V}{4\pi}}\) |
Make \(b\) the subject of the equation \(a=\sqrt{bc-4}\). (2 marks)
\(b=\dfrac{a^2+4}{c}\)
\(a\) | \(=\sqrt{bc-4}\) |
\(a^2\) | \(=bc-4\) |
\(bc\) | \(=a^2+4\) |
\(\therefore\ b\) | \(=\dfrac{a^2+4}{c}\) |
Make \(V\) the subject of the equation \(E=\dfrac{3}{2}mV^3\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(v=\sqrt[3]{\dfrac{2E}{3m}}\)
\(E\) | \(=\dfrac{3}{2}mV^3\) |
\(2E\) | \(=3mV^3\) |
\(\dfrac{2E}{3}\) | \(=mV^3\) |
\(V^3\) | \(=\dfrac{2E}{3m}\) |
\(V\) | \(=\sqrt[3]{\dfrac{2E}{3m}}\) |
The volume of a sphere is given by \(V=\dfrac{4}{3}\pi r^3\) where \(r\) is the radius of the sphere.
If the volume of a sphere is \(385\ \text{cm}^3\), find the radius, to 1 decimal place. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(4.5\ \text{cm (to 1 d.p.)}\)
\(V\) | \(=\dfrac{4}{3}\pi r^3\) |
\(3V\) | \(= 4\pi r^3\) |
\(r^3\) | \(=\dfrac{3V}{4\pi}\) |
\(\text{When}\ \ V =385\)
\(r^3\) | \(=\dfrac{3\times 385}{4\pi}\) |
\(=91.911\dots\) | |
\(\therefore\ r\) | \(=\sqrt[3]{91.911\dots}\) |
\(=4.512\dots\ \ \text{(by calc)}\) | |
\(=4.5\ \text{cm (to 1 d.p.)}\) |