Find every angle, \(\theta\), between \(-180^{\circ} \leq \theta \leq 180^{\circ}\), for which
\(\cos\,\theta=\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find every angle, \(\theta\), between \(-180^{\circ} \leq \theta \leq 180^{\circ}\), for which
\(\cos\,\theta=\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=30^{\circ}, -30^{\circ}\)
\(\text{Reference angle:}\ \ \cos\,\theta=\dfrac{\sqrt{3}}{2}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
\(\text{cos is positive in 1st/4th quadrants.}\)
\(\theta=30^{\circ}, (360-30)^{\circ}=30^{\circ}, 330^{\circ}\)
\(\therefore \theta=30^{\circ}, -30^{\circ}\ \ \ (-180^{\circ} \leq \theta \leq 180^{\circ}) \)
Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\cos\,\theta=\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=30^{\circ}, 330^{\circ}\)
\(\text{Reference angle:}\ \ \cos\,\theta=\dfrac{\sqrt{3}}{2}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
\(\text{cos is positive in 1st/4th quadrants.}\)
\(\theta=30^{\circ}, (360-30)^{\circ}=30^{\circ}, 330^{\circ}\)
Solve for all \(\theta\) in the range \(0^{\circ} \leq \theta \leq 360^{\circ}\), that make the following equation correct
\(\cos^{2}\theta-\cos\,\theta=0\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=0^{\circ},90^{\circ},270^{\circ},360^{\circ}\)
| \(\cos^{2}\theta-\cos\,\theta\) | \(=0\) | |
| \(\cos\,\theta(\cos\,\theta-1)\) | \(=0\) |
\(\text{If}\ \ \cos\,\theta=0\ \ \Rightarrow\ \ \theta=90^{\circ}, 270^{\circ}\)
\(\text{If}\ \ \cos\,\theta-1=0\ \ \Rightarrow\ \ \cos\,\theta=1\ \ \Rightarrow\ \ \theta=0^{\circ}, 360^{\circ}\)
\(\theta=0^{\circ},90^{\circ},270^{\circ},360^{\circ}\)
Find every angle, \(\theta\), between \(0^{\circ} \leq \theta \leq 360^{\circ}\), for which
\(\cos\,\theta=-\dfrac{1}{\sqrt{2}}\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=135^{\circ}, 225^{\circ}\)
\(\text{Reference angle:}\ \ \cos\,\theta=\dfrac{1}{\sqrt{2}}\ \ \Rightarrow \ \ \theta = 45^{\circ}\)
\(\text{cos is negative in 2nd/3rd quadrants.}\)
\(\theta=(180-45)^{\circ}, (180+45)^{\circ}=135^{\circ}, 225^{\circ}\)
Find every angle, \(\theta\), between \(0^{\circ} \leq \theta \leq 360^{\circ}\), for which
\(\cos\,\theta=\dfrac{1}{2}\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\theta=60^{\circ}, 300^{\circ}\)
\(\text{Reference angle:}\ \ \cos\,\theta=\dfrac{1}{2}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
\(\text{cos is positive in 1st/4th quadrants.}\)
\(\theta=60^{\circ}, (360-60)^{\circ}=60^{\circ}, 300^{\circ}\)
Solve \(2\cos(2\theta) = -\sqrt{3}\) for \(\theta\), where \(0^{\circ} \leq \theta \leq 180^{\circ}\). (2 marks)
\(\theta=75^{\circ}, 105^{\circ}\)
| \(2\cos(2\theta)\) | \(= -\sqrt{3}\) | |
| \(\cos(2\theta)\) | \(=-\dfrac{\sqrt{3}}{2}\) |
\(\text{Reference angle:}\ \cos\,30^{\circ}=\dfrac{\sqrt{3}}{2}\)
\(\text{Since cos is negative in 2nd/3rd quadrants:}\)
| \(2\theta\) | \(= 180-30, 180+30, 360+180-30, 360+180+30,\ …\) |
| \(=150^{\circ}, 210^{\circ}, 510^{\circ},\ …\) | |
| \(\therefore \theta\) | \(=75^{\circ}, 105^{\circ}\ \ \ (0^{\circ} \leq \theta \leq 180^{\circ})\) |
Solve the equation \(\cos\left(\dfrac{3\theta}{2}\right) = \dfrac{1}{2}\) for \(-90^{\circ} \leq \theta \leq 90^{\circ}\). (2 marks)
\(\theta = -40^{\circ}, 40^{\circ}\)
\(\cos\left(\dfrac{3\theta}{2}\right) = \dfrac{1}{2}\)
\(\text{Reference angle:}\ \cos\,60^{\circ} = \dfrac{1}{2}\)
\(\text{Since cos is positive in 1st/4th quadrants:}\)
| \(\dfrac{3\theta}{2}\) | \(= -60^{\circ}, 60^{\circ}, 360^{\circ},\ …\) |
| \(\theta\) | \(= -40^{\circ}, 40^{\circ}, 240^{\circ},\ …\) |
| \(= -40^{\circ}, 40^{\circ}\ \ \ (-90^{\circ} \leq \theta\leq 90^{\circ})\) |
Given \(\cos\,\theta = -\dfrac{12}{37}\) for \(0^{\circ} \lt \theta \lt 180^{\circ}\),
find the exact value of \(\sin\,\theta\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{35}{37}\)
Find the exact value of
\(\cos(-240^{\circ})\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(-\dfrac{1}{2}\)
\(\cos(-240^{\circ})= \cos\,120^{\circ}\)
\(\text{Reference angle:}\ 180-120=60^{\circ}\)
\(\text{Since cos is negative in 2nd quadrant:}\)
\(\cos(-240^{\circ})= -\cos\,60^{\circ}=-\dfrac{1}{2}\)
Find the exact value of \(\theta\) such that \(2\cos\,\theta = 1\), where \(0^{\circ} \leq \theta \leq 90^{\circ}\). (2 marks)
\(\theta = 60^{\circ}\)
| \(2 \cos\,\theta\) | \(= 1\) |
| \(\cos\,\theta\) | \(= \dfrac{1}{2}\) |
| \(\therefore \theta\) | \(= 60^{\circ},\ \ \ \ 0^{\circ} \leq \theta \leq 90^{\circ}\) |
Solve \(\cos\,\theta = \dfrac{1}{\sqrt{2}}\) for \(0^{\circ} ≤ \theta ≤ 360^{\circ}\). (2 marks)
\(45^{\circ}, 315^{\circ}`
\(\cos\,\theta = \dfrac{1}{\sqrt{2}}\) for \(0^{\circ} ≤ \theta ≤ 360^{\circ}\)
\(\text{Reference angle:}\ \cos\,45^{\circ} = \dfrac{1}{\sqrt{2}}\)
\(\text{Since cos is positive in 1st/4th quadrants:}\)
| \(\theta\) | \(= 45^{\circ}, 360-45` |
| \(= 45^{\circ}, 315^{\circ}\) |
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(60^{\circ}\)
b. \(-\dfrac{1}{2}\)
a. \(240^{\circ}\ \text{is in the 3rd quadrant.}\)
\(\text{Reference angle:}\ \ 180+\theta=240^{\circ}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
b. \(\cos 60^{\circ} = \dfrac{1}{2}\)
\(\Rightarrow \ \cos \theta<0\ \ \text{in 3rd quadrant}\)
\(\therefore \cos 240^{\circ} = -\dfrac{1}{2}\)