The graph of `y = kx-3` intersects the graph of `y = x^2 + 8x` at two distinct points for
- `k = 11`
- `k > 8 + 2 sqrt 3 or k < 8-2 sqrt 3`
- `5 <= k <= 6`
- `8-2 sqrt 3 <= k <= 8 + 2 sqrt 3`
Aussie Maths & Science Teachers: Save your time with SmarterEd
The graph of `y = kx-3` intersects the graph of `y = x^2 + 8x` at two distinct points for
`B`
`text(Intersection occurs when:)`
| `kx-3` | `= x^2 + 8x` |
| `x^2 + (8-k)x + 3` | `= 0` |
`text(For 2 points of intersection:)`
| `Delta` | `> 0` |
| `(8-k)^2-4 (3)` | `> 0` |
| `(8-k)^2` | `>12` |
`:. k < 8-2 sqrt 3\ uu\ k > 8 + 2 sqrt 3`
`=> B`
The set of values of `k` for which `x^2 + 2x-k = 0` has two real solutions is
`B`
`text(Two real solutions):`
| `b^2-4ac` | `> 0` |
| `4-4 ⋅ 1 ⋅ (-k)` | `> 0` |
| `4k` | `> -4` |
| `k` | `> -1` |
`k in (-1, oo)`
`=> B`
Find the value of \(k\) if \(4kx^2-(3-4k) x+k=0\) has one root. (2 marks) --- 7 WORK AREA LINES (style=lined) --- \(k=\dfrac{3}{8}\) \(4kx^2-(3-4k) x+k=0\) \(\text{1 root}\ \Rightarrow \Delta=0\)
\(\Delta\)
\(=b^2-4 a c\)
\(0\)
\(=\left[ -\left( 3-4k \right)\right]^2-4\times 4k \times k\)
\(0\)
\(=9-24k + 16k^2-16k^2\)
\(24k\)
\(=9\)
\(k\)
\(=\dfrac{9}{24}=\dfrac{3}{8}\)
Show that the parabola \(2x^2-kx+k-2\) has at least one real root. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(2x^2-kx+k-2=0\)
\(\Delta=b^2-4ac=(-k)^2-4 \times 2(k-2) = k^{2}-8k+16\)
\(\text{Real roots:}\ \ \Delta \geqslant 0\)
| \(k^2-8k+16\) | \(\geqslant 0\) | |
| \((x-4)^2\) | \(\geqslant 0\) |
\(\therefore\ \text{At least one root exists for all}\ k\)
\(2x^2-kx+k-2=0\)
\(\Delta=b^2-4ac=(-k)^2-4 \times 2(k-2) = k^{2}-8k+16\)
\(\text{Real roots:}\ \ \Delta \geqslant 0\)
| \(k^2-8k+16\) | \(\geqslant 0\) | |
| \((x-4)^2\) | \(\geqslant 0\) |
\(\therefore\ \text{At least one root exists for all}\ k\)
For what values of `k` does the quadratic equation `x^2-8x + k = 0` have real roots? (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`k <= 16`
`x^2-8x + k = 0`
`text(Real roots when)\ Delta >= 0:`
| `b^2-4ac` | `>= 0` |
| `(-8)^2-4 xx 1 xx k` | `>= 0` |
| `64-4k` | `>= 0` |
| `4k` | `<= 64` |
| `k` | `<= 16` |
`:.\ text(Real roots exists when)\ k <= 16`
For what values of `k` does `x^2-kx + 4 = 0` have no real roots? (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-4 < k < 4`
`x^2-kx + 4 = 0`
`text(No real roots when)\ Delta < 0`
| `b^2-4ac` | `< 0` |
| `(text(–) k^2)-4 xx 1 xx 4` | `< 0` |
| `k^2-16` | `< 0` |
| `k^2` | `< 16` |
| `:.\ -4 < k` | `< 4` |
`:.\ text(There are no real roots when)\ \ \ -4 < k < 4.`
Find the values of `k` for which the quadratic equation
`x^2-(k + 4)x + (k + 7) = 0`
has equal roots. (3 marks)
`k = -6 \ \ text(or)\ \ 2`
`x^2-(k + 4)x + (k + 7) = 0`
`text(Equal roots when)\ Delta = 0:`
| `[-(k + 4)]^2-4(1)(k + 7)` | `= 0` |
| `k^2 + 8k + 16-4k\-28` | `= 0` |
| `k^2 + 4k-12` | `= 0` |
| `(k + 6)(k-2)` | `= 0` |
| `k` | `= -6 \ \ text(or)\ \ 2` |
`:.\ text(Equal roots when)\ \ k = -6 or 2`