Solve for \(x\), giving your answers in the simplest form \(a+b\sqrt{c}\) where \(a, b\) and \(c\) are real:
\(5 x^2-20 x+4=0\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve for \(x\), giving your answers in the simplest form \(a+b\sqrt{c}\) where \(a, b\) and \(c\) are real:
\(5 x^2-20 x+4=0\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(x=2 \pm \dfrac{4}{5} \sqrt{5}\)
\(5 x^2-20 x+4=0\)
| \(x\) | \(=\dfrac{-b \pm \sqrt{b^2-4 a c}}{2 a}\) |
| \(=\dfrac{20 \pm \sqrt{20^2-4 \times 5 \times 4}}{2 \times 5}\) | |
| \(=\dfrac{20 \pm \sqrt{320}}{10}\) | |
| \(=2 \pm \dfrac{8 \sqrt{5}}{10}\) | |
| \(=2 \pm \dfrac{4}{5} \sqrt{5}\) |
What are the solutions to \(3x^2+2x-4=0\)?
\(A\)
\(3 x^2+2 x-4=0\)
| \(x\) | \(=\dfrac{-b \pm \sqrt{b^2-4 a c}}{2a}\) |
| \(=\dfrac{-2 \pm \sqrt{2^2-4 \times 3 \times-4}}{2 \times 3}\) | |
| \(=\dfrac{-2 \pm \sqrt{52}}{6}\) | |
| \(=\dfrac{-1 \pm \sqrt{13}}{3}\) |
\(\Rightarrow A\)
What are the solutions of `2x^2-5x-1 = 0`?
`D`
`2x^2-5x-1 = 0`
`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`
| `x` | `= (5 +- sqrt{\ \ (-5)^2-4 xx 2 xx(-1) })/ (2 xx 2)` |
| `= (5 +- sqrt(25 + 8) )/4` | |
| `= (5 +- sqrt(33) )/4` |
`=> D`